References
April 2025
WELCOME
NEWS
Myths and Facts Regarding Low-Carbohydrate Diets. Nutrients 2025, 17:1047. https://www.mdpi.com/2072-6643/17/6/1047.
A western dietary pattern during pregnancy is associated with neurodevelopmental disorders in childhood and adolescence. Nature Metabolism 2025, March 3L https://doi.org/10.1038/s42255-025-01230-z.
Cell-autonomous innate immunity by proteasome-derived defence peptides. Nature 2025., March 5: https://doi.org/10.1038/s41586-025-08615-w.
Brain dopamine responses to ultra-processed milkshakes are highly variable and not significantly related to adiposity in humans. Cell Metabolism 2025, 37:616-628.e615. https://doi.org/10.1016/j.cmet.2025.02.002.
Male-Partner Treatment to Prevent Recurrence of Bacterial Vaginosis
N Engl J Med 2025,392:947-957, March 5. https://www.nejm.org/doi/10.1056/NEJMoa2405404.
HEART HEALTH
Long-term survival and durable recovery of heart failure in patients with triglyceride deposit cardiomyovasculopathy treated with tricaprin. Nature Cardiovascular Research 2025, DOI: 10.1038/s44161-025-00611-7
Remarkable regression of diffuse coronary atherosclerosis in patients with triglyceride deposit cardiomyovasculopathy. European Heart Journal 2023: doi.org/10.1093/eurheartj/ehac762.
Sud will present the study, “Sex Differences in Cardiovascular Health Status and Long-Term Outcomes in a Primary Prevention Cohort,” on Saturday, March 29, 2025, at 12:30 p.m. CT / 17:30 UTC in South Hall.
ACC.25 will take place March 29-31, 2025, in Chicago,
Sex Differences in Cardiovascular Health Status and Long-Term Outcomes in a Primary Prevention Cohort. Due to be presented March 29 at ACC.25 Chicago.
Genetic Susceptibility to Type 2 Diabetes, Television Viewing, and Atherosclerotic Cardiovascular Disease Risk. Journal of the American Heart Association 2025, March, 14: 6. https://www.ahajournals.org/doi/10.1161/JAHA.124.036811.
The Relationship Between Allergic Rhinitis, Asthma, and Cardiovascular Disease in the National Health Interview Surveys (NHIS), 1999–2018. The Journal of Allergy and Clinical Immunology: In Practice 2024, 12:1509-1519.e1504. https://www.sciencedirect.com/science/article/pii/S2213219824001545.
Cause-specific mortality in 13,099 patients with metabolic dysfunction-associated steatotic liver disease in Sweden. Journal of Hepatology, 2025; DOI: 10.1016/j.jhep.2025.03.001.
ALLERGY and INTOLERANCE
A molecular basis for milk allergen immune recognition in eosinophilic esophagitis. Journal of Allergy and Clinical Immunology 2025: https://www.jacionline.org/article/S0091-6749(25)00050-8/fulltext.
Global warming risks dehydrating and inflaming human airways. Communications Earth & Environment 2025, March 17, 6 (1): https://www.nature.com/articles/s43247-025-02161-z.
Peanut Oral Immunotherapy in Children with High-Threshold Peanut Allergy. NEJM Evidence 2025, 4: 3. https://evidence.nejm.org/doi/10.1056/EVIDoa2400306.
Maternal supplementation with α-tocopherol inhibits the development of offspring food allergy, H1R signaling and ultimately anaphylaxis early in life. The Journal of Immunology 2025, 214:199-210. https://academic.oup.com/jimmunol/article/214/2/199/8018577.
Identification of antigen-presenting cell–T cell interactions driving immune responses to food. Science 2024: https://www.science.org/doi/10.1126/science.ado5088.
Neonatal gut microbiota and risk of developing food sensitization and allergy. Journal of Allergy and Clinical Immunology 2025, 155:932-946. https://doi.org/10.1016/j.jaci.2024.10.029.
Scratching promotes allergic inflammation and host defense via neurogenic mast cell activation. Science 2025; 387 (6733). DOI: 10.1126/science.adn9390.
POLYPILL – Dr ZOË HARCOMBE
1: https://www.zoeharcombe.com/2024/12/how-accurate-is-your-cholesterol-test/
2 https://www.dailymail.co.uk/health/article-14462335/NHS-statins-reduce-heart-attacks-strokes.html
3: Jordan et al. Primary prevention of heart attacks and strokes: seeking consensus on the polypill approach. BMJ 2025. https://www.bmj.com/content/388/bmj.r208
4: Wald & Law. A strategy to reduce cardiovascular disease by more than 80%. BMJ. 2003. https://pubmed.ncbi.nlm.nih.gov/12829553/
5: https://www.telegraph.co.uk/news/2025/03/05/nhs-should-give-all-over-50s-statins/
6: https://www.thetimes.com/uk/healthcare/article/nhs-daily-polypill-heart-attack-stroke-3bvvk7kj7
7: https://www.thetimes.com/life-style/health-fitness/article/polypill-prescription-nhs-opinion-comment-zklbkvhmd
8: https://www.polypill.com/Home/WhatIsIt
9: https://www.polypill.com/Home/Polypill
10: https://www.polypill.com/Home/FAQ
11: https://www.zoeharcombe.com/2024/06/recent-learnings-about-blood-pressure-meds/
12: https://www.ucl.ac.uk/news/2025/mar/single-pill-could-prevent-most-heart-attacks-and-strokes
13: Roshandel et al. Effectiveness of polypill for primary and secondary prevention of cardiovascular diseases (PolyIran): a pragmatic, cluster-randomised trial. Lancet. 2019. https://pubmed.ncbi.nlm.nih.gov/31448738/
14: Hydrochlorothiazide is a diuretic. It increases the release of urine. It is used to lower blood pressure.
Aspirin is a nonsteroidal anti-inflammatory drug (used to reduce pain, fever, and inflammation), and an antithrombotic (used to prevent or treat blood clots).
Atorvastatin is a statin. It is used to lower cholesterol.
Enalapril is an angiotensin converting enzyme (ACE) inhibitor blocker. It is used to lower blood pressure.
Valsartan is an angiotensin II receptor blocker. It is used to lower blood pressure.
Amlodipine is a calcium channel blocking (CCB) drug. It is used to lower blood pressure.
Losartan is an angiotensin receptor blocking (ARB) drug. It is used to lower blood pressure.
15: This post is specifically for cancer, but it also mentions all-cause mortality and mechanisms by which aspirin can help cardiovascular disease https://www.zoeharcombe.com/2021/09/aspirin-cancer-survival/
16: https://www.printweek.com/content/news/daily-mail-to-fold-print-and-online-operations-together-redundancies-expected/
THIAMINE – ELLIOT OVERTON
- Management of functional gastrointestinal disorders. Clin Med (2021) https://pubmed.ncbi.nlm.nih.gov/33479067/
- Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology (2021) https://pubmed.ncbi.nlm.nih.gov/32294476/
- Observations on induced thiamine (vitamin B1) deficiency in man. Arch Intern Med (1940) https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/546349
- Review of Japanese literature on beriberi and thiamine. (1965) https://www.semanticscholar.org/paper/Review-of-Japanese-literature-on-beriberi-and-Shimazono-Katsura/ce962951c53682d8e503ef4c190296bc4ca2b478
- Gastrointestinal Beriberi: A Previously Unrecognized Syndrome. Annals of Internal Medicine (2024) https://www.acpjournals.org/doi/10.7326/0003-4819-141-11-200412070-00035
- Wernicke Encephalopathy Presenting with Dysphagia: A Case Report and Systematic Literature Review. Nutrients (2022) https://pmc.ncbi.nlm.nih.gov/articles/PMC9788281/
- WERNICKE’S ENCEPHALOPATHY PRESENTING WITH SEVERE DYSPHAGIA: A CASE REPORT. Alcohol and Alcoholism, 2002 https://academic.oup.com/alcalc/article-abstract/37/3/295/132312?redirectedFrom=fulltext
- Gastrointestinal Beriberi as a prodrome of non-alcoholic Wernicke’s encephalopathy: a study of an emerging nutritional deficiency disorder from Kashmir, India. International Journal of Research in Medical Sciences (2019) https://www.msjonline.org/index.php/ijrms/article/view/6449
- A Retrospective Case Series of Thiamine Deficiency in Non-Alcoholic Hospitalized Veterans: An Important Cause of Delirium and Falling? J Clin Med. 2021 https://pmc.ncbi.nlm.nih.gov/articles/PMC8037750/
- Thiamin uptake by pancreatic acinar cells: effect of chronic alcohol feeding/exposure. Am J Physiol Gastrointest Liver Physiol. 2011 https://pmc.ncbi.nlm.nih.gov/articles/PMC3220324/
- Carencia de B en patologia digestiva [B deficiency in digestive pathology]. Rev Clínica Esp 1944 https://www.elsevier.es/en-revista-enfermedades-infecciosas-microbiologia-clinica-english-428-pdf-X0014256544141809
- Effect of vitamin B1on the enzymes of the pancreas in children. Rivista di Clinica Pediatrica, 1939 https://www.cabidigitallibrary.org/doi/full/10.5555/19391402176
- Effect of thiamin deficiency on pancreatic acinar cell function. The American Journal of Clinical Nutrition 1982 https://www.sciencedirect.com/science/article/abs/pii/S0002916523158783
- Severe acute pancreatitis complicating with pancreatic encephalopathy in an adolescent girl. Pakistan Pediatric Journal 2023 https://www.ppj.org.pk/index.php/ppj/article/view/156
- Clinical observation of VB1 Zusanli injection combined with Qing Pancreatic Decoction in the treatment of severe pancreatitis complicated by gastrointestinal paralysis. Journal of Qiqihar University of Medicine (2015) https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=QQHB201506015&uniplatform=NZKPT&v=ocX0RXGGZL7gdA5A0iavPCpMcQWQM3CIqQ-lq4zAwzIh9JifMrja4joHlBLhdgID
- Effect of vitamin B1acupoint injection combined with hot wet compress with mountain mint and alcohol on the recovery of intestinal function from intestinal paralysis induced by acute pancreatitis. Modern Clinical Nursing. 2013 https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2013&filename=XDLH201304023&uniplatform=NZKPT&v=PMA_b0cH0w_gbsv7x88ijEwvpS-kLAgviTA4-JUgAcuqnwVrNytJbienhww_xXNG
- Constipation in Patients with Thiamine Deficiency after Roux-en-Y Gastric Bypass Surgery. Digestion(2013) https://karger.com/dig/article-abstract/88/2/119/105674/Constipation-in-Patients-with-Thiamine-Deficiency?redirectedFrom=fulltext
- The role of vitamin B1in tonus of the large intestine. Roentgenology, 1935 https://link.springer.com/article/10.1007/BF03000956
- False Acute Abdomen with Lactic Acidosis in Vitamin B1
Nihon Kyukyu Igakukai Zasshi, 1993 https://www.jstage.jst.go.jp/article/jjaam1990/4/4/4_4_339/_article/-char/en - The association between dietary vitamin B1 intake and constipation: a population-based study. BMC Gastroenterology(2024) https://bmcgastroenterol.biomedcentral.com/articles/10.1186/s12876-024-03255-2
- The effects of vitamin deficiency on the gastro-intestinal tract. The American Journal of Digestive Diseases (1939) https://link.springer.com/article/10.1007/BF02996333
- Effect of dietary thiamin deficiency on intestinal functions in rats. Am J Clin Nutr (1984) https://pubmed.ncbi.nlm.nih.gov/6465054/
- Wernicke Encephalopathy in Ulcerative Colitis. Inflammatory Bowel Diseases (2021) https://academic.oup.com/ibdjournal/article/28/5/e70/6433696
- Micronutrient deficiencies in inflammatory bowel disease: trivial or crucial? Intest Res. (2016) https://pmc.ncbi.nlm.nih.gov/articles/PMC4863043/
- Erythrocyte transketolase deficiency in patients suffering from Crohn’s disease. Eur Rev Med Pharmacol Sci. (2019) https://pubmed.ncbi.nlm.nih.gov/31646581/
- Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD. Nature Reviews Gastroenterology & Hepatology. (2017) https://www.nature.com/articles/nrgastro.2017.101
- Hypoxia inhibits colonic uptake of the microbiota-generated forms of vitamin B1 viaHIF-1α-mediated transcriptional regulation of their transporters. Journal of Biological Chemistry. (2022) https://www.jbc.org/article/S0021-9258(22)00002-3/fulltext
- Identification of critical variants within SLC44A4, an ulcerative colitis susceptibility gene identified in a GWAS in north Indians. Genes Immun. (2016) https://pubmed.ncbi.nlm.nih.gov/26741288/
- A cross-ethnic survey of CFB and SLC44A4, Indian ulcerative colitis GWAS hits, underscores their potential role in disease susceptibility. Eur J Hum Genet.(2016) https://pubmed.ncbi.nlm.nih.gov/27759029/
- Evaluating the Association of Common Variants of the SLC44A4 Gene with Ulcerative Colitis Susceptibility in the Han Chinese Population. Genet Test Mol Biomarkers. (2017) https://pubmed.ncbi.nlm.nih.gov/28753073/
- Effect of knocking out mouse Slc44a4on colonic uptake of the microbiota-generated thiamine pyrophosphate and colon physiology. Am J Physiol Gastrointest Liver Physiol. (2024) https://pubmed.ncbi.nlm.nih.gov/38713615/
- Neuroimmune communication of the cholinergic system in gut inflammation and autoimmunity. Autoimmunity Reviews (2024) https://www.sciencedirect.com/science/article/abs/pii/S1568997224001691
- The role of thiamine (vitamin B1) in nervous excitation. Exp Cell Res (1958) https://pubmed.ncbi.nlm.nih.gov/13586284/
- Binding of thiamine to nicotinic acetylcholine receptor 1534 in Torpedo marmorata and the frog end plate. Acta Physiol Scand (1978) https://pubmed.ncbi.nlm.nih.gov/307899/
- Effects of the association of sulbutiamine with an acetylcholinesterase inhibitor in early stage and moderate Alzheimer disease. (2007) https://pubmed.ncbi.nlm.nih.gov/17675917/
- Experimental constipation in mice induced by the combined use of atropine and papaverine and the laxative effects of bisacodyl, casanthranol, magnesium sulfate, rhubarb and thiamine derivatives. The Journal of Kansai Medical University. (1973) https://www.jstage.jst.go.jp/article/jkmu1956/25/3/25_300/_article/-char/en
- α-Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res. (2011) https://pubmed.ncbi.nlm.nih.gov/21110783/
- The relation between acute changes in the systemic inflammatory response and circulating thiamine and magnesium concentrations after elective knee arthroplasty. Scientific Reports. (2021) https://www.nature.com/articles/s41598-021-90591-y
- Bacterial lipopolysaccharide inhibits free thiamin uptake along the intestinal tract via interference with membrane expression of thiamin transporters 1 and 2. Am J Physiol-Cell Physiol (2024)
- Enterotoxigenic Escherichia coliheat-labile toxin drives enteropathic changes in small intestinal epithelia. Nature Communications. (2022) https://www.nature.com/articles/s41467-022-34687-7
- Tumor necrosis factor α impedes colonic thiamin pyrophosphate and free thiamin uptake: involvement of JNK/ERK1/2-mediated pathways. American Journal of Cell Physiology. (2022) https://journals.physiology.org/doi/full/10.1152/ajpcell.00458.2022
- Enzymatic conversion of the antibiotic metronidazole to an analogue of thiamine. Arch Biochem Biophys (1987) https://pubmed.ncbi.nlm.nih.gov/2821910/
- Dietary supplementation of thiamine enhances colonic integrity and modulates mucosal inflammation injury in goats challenged by lipopolysaccharide and low pH. Br J Nutr (2022) https://pubmed.ncbi.nlm.nih.gov/35057872/
- Thiamine Alleviates High-Concentrate-Diet Induced Oxidative Stress, Apoptosis, and Protects the Rumen Epithelial Barrier Function in Goats. Front Vet Sci (2021) https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2021.663698/full
- Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vitamin B1. Cell Rep (2015) https://pubmed.ncbi.nlm.nih.gov/26411688/
- Secretory IgA’s Complex Roles in Immunity and Mucosal Homeostasis in the Gut. Mucosal Immunol (2011) https://pubmed.ncbi.nlm.nih.gov/21975936/
- STIMULATING EFFECT OF THIAMINE AND ITS DERIVATIVES ON RAT INTESTINAL MUSCULAR CONTRACTION. Vitamins, (1966) https://www.jstage.jst.go.jp/article/vso/34/4/34_KJ00002905111/_article/-char/en
- EFFECTS OF A VITAMIN B1 CONCENTRATE. Arch Intern Med (Chic). 1937 https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/542914
- Effect of thiamine on various types of synaptic junctions. (1986) https://pubmed.ncbi.nlm.nih.gov/3022166/
- Effects of Vitamin B1 and Inosine on the Intestinal Motility of Rats. (1965) https://www.jstage.jst.go.jp/article/vso/31/1/31_KJ00002903746/_article/-char/ja
- Effect of thiamine on neuromuscular transmission in smooth muscles. Neurophysiology (1994) https://link.springer.com/article/10.1007/BF01053581
- Electromyography of the Intestines by the Intraintestinal Method. The Tohoku Journal of Experimental Medicine (1966) https://www.jstage.jst.go.jp/article/tjem1920/89/1/89_1_61/_article/-char/ja
- EFFECT OF THIAMINE TETRAHYDROFURFURYLDISULFIDE ON THE PERISTALSIS OF THE SMALL BOWEL. Vitamins (1963) https://www.jstage.jst.go.jp/article/vso/28/3/28_KJ00002902745/_article/-char/en
- EFFECT OF THIAMINE TETRAHYDROFURFURYL DISULFIDE UPON THE INTESTINAL MOTILITY. The Journal of Vitaminology. (1965) https://www.jstage.jst.go.jp/article/jnsv1954/11/3/11_3_210/_article
- THE EFFECTS OF THIAMINE TETRAHYDROFURFURYL DISULFIDE UPON THE MOVEMENT OF THE ISOLATED SMALL INTESTINE. The Journal of Vitaminology. (1965) https://www.jstage.jst.go.jp/article/jnsv1954/11/4/11_4_253/_article
- Abstracts of the 60th Annual Meeting of the Tohoku Branch of the Japanese Society of Gastroenterology. Journal of the Japanese Society of Gastroenterology (1966) https://www.jstage.jst.go.jp/article/nisshoshi1964/63/8/63_8_919/_article/-char/ja
- Observation on the therapeutic effect of vitamin B1 intreating intestinal paralysis. Chinese Journal of Clinical Rational Drug Use. 2010 https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2010&filename=PLHY201015056&uniplatform=NZKPT&v=uLzpEwe6K2735tRjuqemRkBMQOLghJK16Mftq37DYUVqMU_7ue8g5wPMCgg-CoRV
- Observation on the therapeutic effect of Xiyanping combined with vitamin B1 inthe treatment of autumn diarrhea in children. Modern Medicine & Health. 2010, https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2010&filename=XYWS201022064&uniplatform=NZKPT&v=O4EkFGEI3-DpEDVTTJgJF0se8xIeqrJHL_DX-3qPIYdkiCxnkvUPC2sJ6EpX3X4A
- Study on the effect of vitamin B1 inpromoting gastrointestinal function recovery in surgical patients. Guide of Chinese Medicine. 2013, https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDHIS2&filename=YYXK201334278&uniplatform=NZKPT&v=zuXrEN5QVoCRfY1EpMzYJNztE08OBxqmyn4TX7BXFaHonandTliGQaJuCQX182YD
- Clinical observation on 32 cases of irritable bowel syndrome treated with acetylspiramycin and vitamin B1. Chinese Journal of Modern Drug Application.2011 https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=ZWYY201114046&uniplatform=NZKPT&v=OWVmr-f1AbtB_-l_r8NycRgFuEIsrt-2yR6s9eXQrIfOdgeYn1LjVePpbuREXIhp
- Effect of acupoint injection of vitamin B1 on gastrointestinal function recovery in patients after abdominal surgery. Chinese Journal of Clinical Rational Drug Use. 2013, https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2013&filename=PLHY201325050&uniplatform=NZKPT&v=gsHjh8dj3QJYYei681eeBSlqKb4TGyoHzGQj0vN9sHMhdBuwPzWZcZcaySV43_lY
- Observation on the therapeutic effect of vitamin B1 injection at Zusanli acupoint in the treatment of abdominal distension after abdominal surgery. Medical Information.2009, https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=YXXX200910117&uniplatform=NZKPT&v=4X9oiuOdYvnPWJmqGHYi1IDipyIsBmJDSggZaZVv9dNQDzKNjl93vTklySq-OEMG
- Observation on the therapeutic effect of vitamin B1 acupoint injection in the treatment of chronic obstructive pulmonary disease with constipation. Inner Mongolia Journal of Traditional Chinese Medicine. 2021 https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=NZYY202101064&uniplatform=NZKPT&v=mMBquiOEvc9PQyhLidouBMT6f2EtMXVAq4Ywh-mpL8-ieD3EEdYOTVBHz5g-UiAI
- Clinical observation on treatment of severe pancreatitis complicated with gastrointestinal paralysis by VB1 Zusanli injection combined with Qingyi decoction. Journal of Qiqihar University of Medicine.2015 https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=QQHB201506015&uniplatform=NZKPT&v=ocX0RXGGZL7gdA5A0iavPCpMcQWQM3CIqQ-lq4zAwzIh9JifMrja4joHlBLhdgID
- 182 Cases of Diarrhea in Children Treated by Acupoint Injection of Vitamin B1. Lishizhen Medicine and Materia Medica Research.2007 https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2007&filename=SZGY200710133&uniplatform=NZKPT&v=EBTuHhGSBYnHcTDLCW_uozy9JEWFbWj2qUv0LGfG0VdBBmW6Vl2PO-M0PmiI558T
- Investigating the Impact of Selected B 865 Vitamins (B1, B2, B6, and B12) on Acute Colitis Induced Experimentally in Rats. Int J Prev Med (2024) https://pubmed.ncbi.nlm.nih.gov/39742123/
NEURODIVERGENCE – PATRICK HOLFORD
- https://www.openaccessgovernment.org/neurodiversity-celebration-week-2024-destigmatising-neurodivergence-in-the-uk/175180/#:~:text=Neurodiversity%20Celebration%20Week%202024%20runs,Not%20according%20to%20new%20research.
- Special educational needs in England, Academic year 2023/24 – Explore education statistics – GOV.UK
- https://www.cdc.gov/mmwr/volumes/72/ss/ss7202a1.htm?s_cid=ss7202a1_w
- https://researchbriefings.files.parliament.uk/documents/POST-PN-0612/POST-PN-0612.pdf; see also Russell G, Stapley S, Newlove-Delgado T, Salmon A, White R, Warren F, Pearson A, Ford T. Time trends in autism diagnosis over 20 years: a UK population-based cohort study. J Child Psychol Psychiatry. 2022 Jun;63(6):674-682. doi: 10.1111/jcpp.13505. Epub 2021 Aug 19. PMID: 34414570.
- van Os J, Guloksuz S. Population Salutogenesis—The Future of Psychiatry? JAMA Psychiatry. Published online December 20, 2023. doi:10.1001/jamapsychiatry.2023.4582
- Loperfido, F., Sottotetti, F., Bianco, I. et al. Folic acid supplementation in European women of reproductive age and during pregnancy with excessive weight: a systematic review. Reprod Health 22, 13 (2025). https://doi.org/10.1186/s12978-025-01953-y
- Roigé-Castellví J, Murphy M, Fernández-Ballart J, Canals J. Moderately elevated preconception fasting plasma total homocysteine is a risk factor for psychological problems in childhood. Public Health Nutr. 2019 Jun;22(9):1615-1623. doi: 10.1017/S1368980018003610. Epub 2019 Jan 14. PMID: 30636652; PMCID: PMC10261079; see also Murphy MM, Fernandez-Ballart JD, Molloy AM, Canals J. Moderately elevated maternal homocysteine at preconception is inversely associated with cognitive performance in children 4 months and 6 years after birth. Matern Child Nutr 2017;13,e12289 .doi: 10.1111/mcn.12289
- Smith AD, Refsum H. Do we need to reconsider the desirable blood level of vitamin B12? J Intern Med. 2012 Feb;271(2):179-82. doi: 10.1111/j.1365-2796.2011.02485.x. Epub 2011 Dec 11. PMID: 22092891.
- Kara İS, Peker NA, Dolğun İ, Mertoğlu C. Vitamin B12 Level in Children. J Curr Pediatr. 2023 Aug;21(2):127-134. doi:10.4274/jcp.2023.75688.
- Smith AD, Refsum H. Homocysteine – from disease biomarker to disease prevention. J Intern Med. 2021 Oct;290(4):826-854. doi: 10.1111/joim.13279. Epub 2021 Apr 6. PMID: 33660358.
- Ogundipe E, Johnson MR, Wang Y, Crawford MA. Peri-conception maternal lipid profiles predict pregnancy outcomes. Prostaglandins Leukot Essent Fatty Acids. 2016 Nov;114:35-43. doi: 10.1016/j.plefa.2016.08.012. Epub 2016 Sep 10. PMID: 27926462.
- Caudill MA, Strupp BJ, Muscalu L, Nevins JEH, Canfield RL. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. FASEB J. 2018 Apr;32(4):2172-2180. doi: 10.1096/fj.201700692RR. Epub 2018 Jan 5. PMID: 29217669; PMCID: PMC6988845.
- Niu YY, Yan HY, Zhong JF, Diao ZQ, Li J, Li CP, Chen LH, Huang WQ, Xu M, Xu ZT, Liang XF, Li ZH, Liu D. Association of dietary choline intake with incidence of dementia, Alzheimer disease, and mild cognitive impairment: a large population-based prospective cohort study. Am J Clin Nutr. 2025 Jan;121(1):5-13. doi: 10.1016/j.ajcnut.2024.11.001. Epub 2024 Nov 7. PMID: 39521435.
- Liu Z, Wang J, Xu Q, Hong Q, Zhu J, Chi X. Research Progress in Vitamin A and Autism Spectrum Disorder. Behav Neurol. 2021 Dec 7;2021:5417497. doi: 10.1155/2021/5417497. PMID: 34917197; PMCID: PMC8670912.
- https://www.nihr.ac.uk/news/teenagers-problematic-smartphone-use-are-twice-likely-have-anxiety
- D’Adamo CR, Nelson JL, Miller SN, Rickert Hong M, Lambert E, Tallman Ruhm H. Reversal of Autism Symptoms among Dizygotic Twins through a Personalized Lifestyle and Environmental Modification Approach: A Case Report and Review of the Literature. J Pers Med. 2024 Jun 15;14(6):641. doi: 10.3390/jpm14060641. PMID: 38929862; PMCID: PMC11205016.
- Li CX, Liu YG, Che YP, Ou JL, Ruan WC, Yu YL, Li HF. Association Between MTHFR C677T Polymorphism and Susceptibility to Autism Spectrum Disorders: A Meta-Analysis in Chinese Han Population. Front Pediatr. 2021 Mar 10;9:598805. doi: 10.3389/fped.2021.598805. PMID: 33777860; PMCID: PMC7987783; see also Liu X, Zou M, Sun C, Wu L, Chen WX. Prenatal Folic Acid Supplements and Offspring’s Autism Spectrum Disorder: A Meta-analysis and Meta-regression. J Autism Dev Disord. 2022 Feb;52(2):522-539. doi: 10.1007/s10803-021-04951-8. Epub 2021 Mar 20. PMID: 33743119; PMCID: PMC8813730; see also Hoxha B, Hoxha M, Domi E, Gervasoni J, Persichilli S, Malaj V, Zappacosta B. Folic Acid and Autism: A Systematic Review of the Current State of Knowledge. Cells. 2021 Aug 3;10(8):1976. doi: 10.3390/cells10081976. PMID: 34440744; PMCID: PMC8394938.
- Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet 2007, 369:578-585.
- Is Autism A G-Alpha Protein Defect Reversible With Natural Vitamin A? http://www.megson.com/readings/MedicalHypothesis.pdf.
EVIDENCE – DANNY LENNON
- Examining adaptations of evidence-based programs in natural contexts. Journal of Primary Prevention 2013, 34(3), 147-161: http://link.springer.com/article/10.1007%2Fs10935-013-0303-6.
- Evidence-based medicine. Semin Perinatol 1997, 21: 3-5. https://pubmed.ncbi.nlm.nih.gov/9190027.
- https://tedx.tumblr.com/post/37405280671/a-letter-to-the-tedx-community-on-tedx-and-bad.
Prof David Sackett
- https://www.cebm.ox.ac.uk/news/views/reflections-on-david-sacketts-time-at-the-centre-for-evidence-based-medicine.
2. “Champion of evidence-based medicine who won over the medical establishment”, by Drummond Rennie. The Guardian, May 29, 2015: https://www.theguardian.com/education/2015/may/29/david-sackett.
3. Sackett DL: Evidence-based medicine. Semin Perinatol 1997, 21:3-5. https://pubmed.ncbi.nlm.nih.gov/9190027.
RESEARCH UPDATE
Pregnancy Metal Mixtures and Blood Pressure and Hypertension in Mid-Life: A Prospective U.S. Cohort Study. Hypertension 2025, 82:640-651. https://www.ahajournals.org/doi/abs/10.1161/HYPERTENSIONAHA.124.23980.
Optimising Cannabidiol Delivery: Improving Water Solubility and Permeability Through Phospholipid Complexation. International Journal of Molecular Sciences 2025; 26 (6): 2647. DOI: 10.3390/ijms26062647.
Beyond soluble and insoluble: A comprehensive framework for classifying dietary fibre’s health effects. Food Research International 2025: https://doi.org/10.1016/j.foodres.2025.115843.
March 2025
NEWS
Immunological and Antigenic Signatures Associated with Chronic Illnesses after COVID-19 Vaccination. medRxiv 2025:2025.2002.2018.25322379. https://www.medrxiv.org/content/medrxiv/early/2025/02/18/2025.02.18.25322379.full.pdf.
Vitamin B12 Levels Association with Functional and Structural Biomarkers of Central Nervous System Injury in Older Adults. Annals of Neurology 2025, Feb 10: https://onlinelibrary.wiley.com/doi/10.1002/ana.27200.
Changing life expectancy in European countries 1990–2021: a subanalysis of causes and risk factors from the Global Burden of Disease Study 2021. The Lancet Public Health https://doi.org/10.1016/S2468-2667(25)00009-X.
Successful application of dietary ketogenic metabolic therapy in patients with glioblastoma: a clinical study. Frontiers in Nutrition 2025, 11: https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2024.1489812.
Alterations in Gut Microbiome-Host Relationships After Immune Perturbation in Patients With Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm 2025, 12:e200355. https://pubmed.ncbi.nlm.nih.gov/39819054.
Impact of microbiota on female fertility and gynecological problems. Reproductive and Developmental Medicine 2024, 8:242-251. https://journals.lww.com/rdm/fulltext/2024/12000/impact_of_microbiota_on_female_fertility_and.7.aspx.
Kryptopyrroluria testing and treatment – GILIAN CROWTHER
Whittaker JW. Intracellular trafficking of the pyridoxal cofactor. Implications for health and metabolic disease. Arch Biochem Biophys. 2016 Feb 15;592:20-6; https://pubmed.ncbi.nlm.nih.gov/26619753/
https://www.imperial.ac.uk/news/192827/qa-tackling-zinc-deficiency-with-approach/; Moore R.E.T., et al. Assessment of coupled Zn concentration and natural stable isotope analyses of urine as a novel probe of Zn status. Metallomics. 2019 Sep 1;11(9):1506-1517; https://pubmed.ncbi.nlm.nih.gov/31411226/
Holley AK et al. Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci. 2011;12(10):7114-62; https://pmc.ncbi.nlm.nih.gov/articles/PMC3211030/
Floris G. et al. The Physiopathological Significance of Ceruloplasmin: A Possible Therapeutic Approach. Biochem. Pharmacol. 2000;60:1735–1741; https://pubmed.ncbi.nlm.nih.gov/11108788/
Kataoka M, Tavassoli M. Ceruloplasmin receptors in liver cell suspensions are limited to the endothelium. Exp Cell Res. 1984 Nov;155(1):232-40; https://pubmed.ncbi.nlm.nih.gov/6092118/
Lopez MJ et al. Biochemistry, Ceruloplasmin. 2023 Feb 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 32119309; https://pubmed.ncbi.nlm.nih.gov/32119309/
Cousins, R.J., Barber, E.F. (1987). Regulation of Ceruloplasmin Synthesis by Retinoic Acid and Interleukin-1. In: Sorenson, J.R.J. (eds) Biology of Copper Complexes. Experimental Biology and Medicine, vol 16. Humana Press; https://link.springer.com/chapter/10.1007/978-1-4612-4584-1_2
Kedishvili NY. Retinoic Acid Synthesis and Degradation. Subcell Biochem. 2016;81:127-161; https://pubmed.ncbi.nlm.nih.gov/27830503/
https://klinghardtinstitute.com/wp-content/uploads/2023/05/KPU-HPU-explore-9-09.pdf
https://www.youtube.com/watch?v=THZhANfFnyY
https://klinghardtinstitute.com/category/video/
https://theperrintechnique.com/
Hagino N, Ichimura S. [Effect of chlorella on fecal and urinary cadmium excretion in “Itai-itai” disease]. Nihon Eiseigaku Zasshi. 1975 Apr;30(1):77; https://pubmed.ncbi.nlm.nih.gov/166227/; Carr HP et al. Characterization of the cadmium-binding capacity of Chlorella vulgaris. Bull Environ Contam Toxicol. 1998 Mar;60(3):433-40; https://pubmed.ncbi.nlm.nih.gov/9580309/; Queiroz ML et al. Protective effects of Chlorella vulgaris in lead-exposed mice infected with Listeria monocytogenes. Int Immunopharmacol. 2003 Jun;3(6):889-900; https://pubmed.ncbi.nlm.nih.gov/12781705/; Mercola, Joseph & Klinghardt, Dietrich. (2001). Mercury Toxicity and Systemic Elimination Agents. Journal of Nutritional & Environmental Medicine. 11. 53-62; https://www.tandfonline.com/doi/abs/10.1080/13590840020030267; Uchikawa T et al. The influence of Parachlorella beyerinckii CK-5 on the absorption and excretion of methylmercury (MeHg) in mice. J Toxicol Sci. 2010 Feb;35(1):101-5; https://pubmed.ncbi.nlm.nih.gov/20118630/
https://www.casi.org/latest-clinical-research-zeolite-heavy-metal-detoxification
Eliaz I et al. Integrative medicine and the role of modified citrus pectin/alginates in heavy metal chelation and detoxification–five case reports. Forsch Komplementmed. 2007 Dec;14(6):358-64.; http://tang-thorkil.dk/chelationstudy.pdf
Carotenuto A et al. The flavonoids of Allium ursinum. Phytochemistry. 1996 Feb;41(2):531-6; https://pubmed.ncbi.nlm.nih.gov/8821433/
https://www.healthline.com/nutrition/parsley
LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012–. Horsetail. 2022 Jul 25. PMID: 35998247; https://pubmed.ncbi.nlm.nih.gov/35998247/
Dobrikova AG et al. Cadmium toxicity in Salvia sclarea L.: An integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. Ecotoxicol Environ Saf. 2021 Feb;209:111851; https://pubmed.ncbi.nlm.nih.gov/33421673/; Rashwan HM et al. Bioactive phytochemicals from Salvia officinalis attenuate cadmium-induced oxidative damage and genotoxicity in rats. Environ Sci Pollut Res Int. 2021 Dec;28(48):68498-68512; https://pubmed.ncbi.nlm.nih.gov/34275073/
Hyun M et al. Melatonin protects against cadmium-induced oxidative stress via mitochondrial STAT3 signaling in human prostate stromal cells. Commun Biol. 2023 Feb 8;6(1):157; https://pubmed.ncbi.nlm.nih.gov/36750754/
Ferrero ME. Neuron Protection by EDTA May Explain the Successful Outcomes of Toxic Metal Chelation Therapy in Neurodegenerative Diseases. Biomedicines. 2022 Oct 4;10(10):2476; https://pubmed.ncbi.nlm.nih.gov/36289738/
https://bio4climate.org/wp-content/uploads/Compendium-Release-Vol-2-No-2-January-2019-r.1.pdf Appendix B – The Fourth Phase of Water.
Troxell B et al. Borrelia burgdorferi, a pathogen that lacks iron, encodes manganese-dependent superoxide dismutase essential for resistance to streptonigrin. J Biol Chem. 2012 Jun 1;287(23):19284-93; https://pubmed.ncbi.nlm.nih.gov/22500025/
https://biologyinsights.com/zinc-ionophores-mechanisms-types-and-immune-function/
Velthuis AJ et al. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010 Nov 4;6(11):e1001176; https://pubmed.ncbi.nlm.nih.gov/21079686/
https://lpi.oregonstate.edu/mic/minerals/copper
Cu-RE Your Fatigue: The Root Cause and How To Fix It On Your Own ; Author, Morley Robbins ; Publisher, Gatekeeper Press, 2021, p. 163
Ramos D et al. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells. PLoS One. 2016 Mar 2;11(3):e0149516; https://pubmed.ncbi.nlm.nih.gov/26934375/
Op. cit. Morley Robbins, p. 60
Mancilha E.M.B., Oliveira JSR. SARS-CoV-2 association with hemoglobin and iron metabolism. Rev Assoc Med Bras (1992). 2021 Sep;67(9):1349-1352; https://pubmed.ncbi.nlm.nih.gov/34816933/; Ehsani S. COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. Biol Direct. 2020 Oct 16;15(1):19; https://pubmed.ncbi.nlm.nih.gov/34816933/; https://biologydirect.biomedcentral.com/articles/10.1186/s13062-020-00275-2; Cavezzi A et al. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020 May 28;10(2):1271; https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC7267810/
https://www.westonaprice.org/health-topics/toxic-iron-and-ferroxidase-the-master-antioxidant/#gsc.tab=0; Hodges RE et al. Hematopoietic studies in vitamin A deficiency. Am J Clin Nutr. 1978 May; 31(5):876-85, https://pubmed.ncbi.nlm.nih.gov/645632/; https://therootcauseprotocol.com/toxicity-post-69-the-iron-y-of-retinol/
Sullivan VK et al. Metallothionein expression is increased in monocytes and erythrocytes of young men during zinc supplementation. J Nutr. 1998 Apr;128(4):707-13; https://pubmed.ncbi.nlm.nih.gov/9521632/
Krezel A, Maret W. Different redox states of metallothionein/thionein in biological tissue. Biochem J. 2007 Mar 15;402(3):551-8; https://pmc.ncbi.nlm.nih.gov/articles/PMC1863571/
AZ and DEMENTIA – PATRICK HOLFORD
https://www.science.org/content/article/potential-fabrication-research-images-threatens-key-theory-alzheimers-disease#
Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015 Jun;18(6):794-9. doi: 10.1038/nn.4017. PMID: 26007212; also see references and full discussion in Chapter 8 of ‘How Not to Study a Disease: The Story of Alzheimer’s, K. Herrup (MIT Press)
Volloch V, Rits S. Results of Beta Secretase-Inhibitor Clinical Trials Support Amyloid Precursor Protein-Independent Generation of Beta Amyloid in Sporadic Alzheimer’s Disease. Med Sci (Basel). 2018 Jun 2;6(2):45. doi: 10.3390/medsci6020045. PMID: 29865246; PMCID: PMC6024788.
https://digitaleditions.telegraph.co.uk/data/1909/reader/reader.html?#!preferred/0/package/1909/pub/1909/page/29/article/NaN.
Ackley SF, Zimmerman SC, Brenowitz WD, Tchetgen Tchetgen EJ, Gold AL, Manly JJ, Mayeda ER, Filshtein TJ, Power MC, Elahi FM, Brickman AM, Glymour MM. Effect of reductions in amyloid levels on cognitive change in randomized trials: instrumental variable meta-analysis. BMJ. 2021 Feb 25;372:n156. doi: 10.1136/bmj.n156. Erratum in: BMJ. 2022 Aug 30;378:o2094. doi: 10.1136/bmj.o2094. PMID: 33632704; PMCID: PMC7905687.
https://www.alzheimers.org.uk/for-researchers/explaining-amyloid-research-study-controversy.
MRC grant – https://www.theguardian.com/society/2024/oct/24/tens-of-thousands-of-uk-dementia-patients-to-be-enrolled-in-clinical-trials?CMP=Share_iOSApp_Other
https://www.bbc.co.uk/programmes/m0024ng7
Smith AD, Refsum H. Homocysteine, B Vitamins, and Cognitive Impairment. Annu Rev Nutr. 2016 Jul 17;36:211-39. doi: 10.1146/annurev-nutr-071715-050947. PMID: 27431367; see also LiJ-G,ChuJ,BarreroC,MeraliS,Pratico`D.2014.Homocysteine exacerbatesβ-amyloid, tau pathology, and cognitive deficit in a mouse model of Alzheimer’s disease with plaques and tangles. Ann. Neurol. 75:851–63; see also Shirafuji N et al Homocysteine Increases Tau Phosphorylation, Truncation and Oligomerization. Int J Mol Sci. 2018 Mar 17;19(3):891. doi: 10.3390/ijms19030891. PMID: 29562600; PMCID: PMC5877752; see also Bossenmeyer-Pourié C et al. N-homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer’s disease and vascular dementia. J Pathol. 2019 Jul;248(3):291-303. doi: 10.1002/path.5254. Epub 2019 Mar 19. PMID: 307349
Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004 May;61(5):661-6. doi: 10.1001/archneur.61.5.661. PMID: 15148141; see alsoYaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology [Internet]. 2004 Aug 24 [cited 2022 Mar 16];63(4):658–63. Available from: https://n.neurology.org/content/63/4/658; see also Tiehuis AM, van der Graaf Y, Visseren FL, Vincken KL, Biessels GJ, Appelman APA, et al. Diabetes Increases Atrophy and Vascular Lesions on Brain MRI in Patients With Symptomatic Arterial Disease. Stroke. 2008 May;39(5):1600–3; see also Samaras K, Lutgers HL, Kochan NA, Crawford JD, Campbell LV, Wen W, et al. The impact of glucose disorders on cognition and brain volumes in the elderly: the Sydney Memory and Ageing Study. AGE [Internet]. 2014 Jan 9 [cited 2022 Aug 5];36(2):977–93. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039246/; see also Mortby ME, Janke AL, Anstey KJ, Sachdev PS, Cherbuin N. High ‘normal’ blood glucose is associated with decreased brain volume and cognitive performance in the 60s: the PATH through life study. PLoS One. 2013 Sep 4;8(9):e73697. doi: 10.1371/journal.pone.0073697. PMID: 24023897; PMCID: PMC3762736; see also Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, Haneuse S, Craft S, Montine TJ, Kahn SE, McCormick W, McCurry SM, Bowen JD, Larson EB. Glucose levels and risk of dementia. N Engl J Med. 2013 Aug 8;369(6):540-8. doi: 10.1056/NEJMoa1215740. Erratum in: N Engl J Med. 2013 Oct 10;369(15):1476. PMID: 23924004; PMCID: PMC3955123.; see also Luchsinger JA, Tang MX, Shea S, Mayeux R. Hyperinsulinemia and risk of Alzheimer disease. Neurology. 2004 Oct 12;63(7):1187-92. doi: 10.1212/01.wnl.0000140292.04932.87. PMID: 15477536; see also Abbatecola AM, Paolisso G, Lamponi M, Bandinelli S, Lauretani F, Launer L, Ferrucci L. Insulin resistance and executive dysfunction in older persons. J Am Geriatr Soc. 2004 Oct;52(10):1713-8. doi: 10.1111/j.1532-5415.2004.52466.x. PMID: 15450050; see also Ye X, Gao X, Scott T, Tucker KL. Habitual sugar intake and cognitive function among middle-aged and older Puerto Ricans without diabetes. Br J Nutr. 2011 Nov;106(9):1423-32; doi: 10.1017/S0007114511001760. Epub 2011 Jun 1. PMID: 21736803; PMCID: PMC4876724; see also Power SE, O’Connor EM, Ross RP, Stanton C, O’Toole PW, Fitzgerald GF, Jeffery IB. Dietary glycaemic load associated with cognitive performance in elderly subjects. Eur J Nutr. 2015 Jun;54(4):557-68; doi: 10.1007/s00394-014-0737-5. Epub 2014 Jul 18. PMID: 25034880; see also Seetharaman S, Andel R, McEvoy C, Dahl Aslan AK, Finkel D, Pedersen NL. Blood glucose, diet-based glycemic load and cognitive aging among dementia-free older adults. J Gerontol A Biol Sci Med Sci. 2015 Apr;70(4):471-9; doi: 10.1093/gerona/glu135. Epub 2014 Aug 22. PMID: 25149688; PMCID: PMC4447796; see also Taylor MK, Sullivan DK, Swerdlow RH, Vidoni ED, Morris JK, Mahnken JD, Burns JM. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr. 2017 Dec;106(6):1463-1470. doi: 10.3945/ajcn.117.162263. Epub 2017 Oct 25. PMID: 29070566; PMCID: PMC5698843; see also Gentreau M, Raymond M, Chuy V, Samieri C, Féart C, Berticat C, Artero S. High Glycemic Load Is Associated with Cognitive Decline in Apolipoprotein E ε4 Allele Carriers. Nutrients. 2020 Nov 25;12(12):3619. doi: 10.3390/nu12123619. PMID: 33255701; PMCID: PMC7761247.
Xie W, Hou Y, Xiao S, Zhang X, Zhang Z. Association between disease-modifying antirheumatic drugs for rheumatoid arthritis and risk of incident dementia: a systematic review with meta-analysis. RMD Open. 2024 Feb 27;10(1):e004016. doi: 10.1136/rmdopen-2023-004016. PMID: 38413170; PMCID: PMC10900342.
Beydoun MA, Beydoun HA, Gamaldo AA, Teel A, Zonderman AB, Wang Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014 Jun 24;14:643. doi: 10.1186/1471-2458-14-643. PMID: 24962204; PMCID: PMC4099157.
Teng Z, Feng J, Liu R, Ji Y, Xu J,Jiang X, Chen H, Dong Y, Meng N, Xiao Y, Xie X and Lv P (2022) Cerebral small vessel disease mediates the association between homocysteine and cognitive function. Front. Aging Neurosci. 14:868777. doi: 10.3389/fnagi.2022.868777
Chen C, Whitsel EA, Espeland MA, Snetselaar L, Hayden KM, Lamichhane AP, Serre ML, Vizuete W, Kaufman JD, Wang X, Chui HC, D’Alton ME, Chen JC, Kahe K. B vitamin intakes modify the association between particulate air pollutants and incidence of all-cause dementia: Findings from the Women’s Health Initiative Memory Study. Alzheimers Dement. 2022 Nov;18(11):2188-2198. doi: 10.1002/alz.12515. Epub 2022 Feb 1. PMID: 35103387; PMCID: PMC9339592.
Ye BS, Kim HJ, Kim YJ, Jung NY, Lee JS, Lee J, Jang YK, Yang JJ, Lee JM, Vogel JW, Na DL, Seo SW. Longitudinal outcomes of amyloid positive versus negative amnestic mild cognitive impairments: a three-year longitudinal study. Sci Rep. 2018 Apr 3;8(1):5557. doi: 10.1038/s41598-018-23676-w. PMID: 29615677; PMCID: PMC5883059.
Lopez OL, Villemagne VL, Chang YF, Cohen AD, Klunk WE, Mathis CA, Pascoal T, Ikonomovic MD, Rowe C, Dore V, Snitz BE, Lopresti BJ, Kamboh MI, Aizenstein HJ, Kuller LH. Association Between β-Amyloid Accumulation and Incident Dementia in Individuals 80 Years or Older Without Dementia. Neurology. 2024 Jan 23;102(2):e207920. doi: 10.1212/WNL.0000000000207920. Epub 2023 Dec 22. PMID: 38165336; PMCID: PMC10870745.
University of Chicago podcast with Prof Karl Herrup, “Where has Alzheimer’s research gone wrong?” March 21, 2024: https://news.uchicago.edu/where-has-alzheimers-research-gone-wrong.
MAGNESIUM AND D
Lin LY, Smeeth L, Langan S, Warren-Gash C: Distribution of vitamin D status in the UK: a cross-sectional analysis of UK Biobank. BMJ Open 2021, 11:e038503. https://pmc.ncbi.nlm.nih.gov/articles/PMC7789460.
https://www.vitafoodsinsights.com/vitamins-minerals/half-of-uk-consumers-unaware-of-vitamin-d-supplementation-guidelines.
https://www.forthwithlife.co.uk/blog/uk-vitamin-d-statistics/#:~:text=Vitamin%20D%20is%20one%20of,optimal%20levels%20of%20vitamin%20D.
9-Cis retinoic acid reduces 1alpha,25-dihydroxycholecalciferol-induced renal calcification by altering vitamin K-dependent gamma-carboxylation of matrix gamma-carboxyglutamic acid protein in A/J male mice. J Nutr 2008, 138:2337-2341. https://pubmed.ncbi.nlm.nih.gov/19022954.
“Tufts University Confirms That Vitamin A Protects Against Vitamin D Toxicity by Curbing Excess Production of Vitamin K-Dependent Proteins”, y Chris Masterjohn, PhD: https://chrismasterjohnphd.substack.com/p/tufts-university-confirms-that-vitamin.
Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med 2013, 11:187. https://pmc.ncbi.nlm.nih.gov/articles/PMC3765911.
Magnesium Status and Stress: The Vicious Circle Concept Revisited. Nutrients 2020, 12. https://pmc.ncbi.nlm.nih.gov/articles/PMC7761127.
Association of magnesium and vitamin D status with grip strength and fatigue in older adults: a 4-week observational study of geriatric participants undergoing rehabilitation. Aging Clin Exp Res 2023, 35:1619-1629. https://pmc.ncbi.nlm.nih.gov/articles/PMC10245357/#Sec2.
Low serum micronutrient concentrations predict frailty among older women living in the community. J Gerontol A Biol Sci Med Sci 2006, 61:594-599. https://pubmed.ncbi.nlm.nih.gov/16799142.
Higher Magnesium Intake Is Associated with a Lower Risk of Frailty in Older Adults. J Am Med Dir Assoc 2025, 26:105335.
Low magnesium in conjunction with high homocysteine increases DNA damage in healthy middle aged Australians. European Journal of Nutrition 2024. DOI: 10.1007/s00394-024-03449-0.
Maternal vitamin D status, fetal growth patterns, and adverse pregnancy outcomes in a multisite prospective pregnancy cohort. The American Journal of Clinical Nutrition 2025, 121, 2: Feb, 376-384. https://www.sciencedirect.com/science/article/pii/S0002916524008906?via%3Dihub.
RESEARCH UPDATE
Plasma proteomics identify biomarkers and undulating changes of brain aging. Nature Aging 2025, 5:99-112. https://doi.org/10.1038/s43587-024-00753-6.
Thalamic opioids from POMC satiety neurons switch on sugar appetite. Science 2025; 387 (6735): 750. DOI: 10.1126/science.adp1510.
Associations between diet quality indices and psoriasis severity: results from the Asking People with Psoriasis about Lifestyle and Eating (APPLE) cross-sectional study. British Journal of Nutrition, 2025; 1 DOI: 10.1017/S0007114525000340.
Associations between diet quality indices and psoriasis severity: results from the Asking People with Psoriasis about Lifestyle and Eating (APPLE) cross-sectional study. British Journal of Nutrition 2025; 1. DOI: 10.1017/S0007114525000340.
Integrating the environmental and genetic architectures of aging and mortality. Nature Medicine 2025, Feb 19: https://www.nature.com/articles/s41591-024-03483-9.
Flame-Free Candles Are Not Pollution-Free: Scented Wax Melts as a Significant Source of Atmospheric Nanoparticles. Environmental Science & Technology Letters 2025; 12 (2): 175 DOI: 10.1021/acs.estlett.4c00986.
Real-time evaluation of terpene emissions and exposures during the use of scented wax products in residential buildings with PTR-TOF-MS. Building and Environment 2024; 255: 111314 DOI: 10.1016/j.buildenv.2024.111314.
Rapid Nucleation and Growth of Indoor Atmospheric Nanocluster Aerosol during the Use of Scented Volatile Chemical Products in Residential Buildings. ACS ES&T Air 2024; 1 (10): 1276 DOI: 10.1021/acsestair.4c00118.
An abundant ginger compound furanodienone alleviates gut inflammation via the xenobiotic nuclear receptor PXR in mice. Nature Communications 2025; 16 (1), Feb 3L https://www.nature.com/articles/s41467-025-56624-0.
Piperideine-6-carboxylic acid regulates vitamin B6 homeostasis and modulates systemic immunity in plants. Nature Plants 2025, 11:263-278. https://doi.org/10.1038/s41477-025-01906-0.
February 2025
NEWS
A triad of somatic mutagenesis converges in self-reactive B cells to cause a virus-induced autoimmune disease. Immunity 2025, Jan 15. DOI: 10.1016/j.immuni.2024.12.011.
Undernutrition and antibody response to measles, tetanus and Haemophilus Influenzae type b (Hib) vaccination in pre-school south African children: The VHEMBE birth cohort study. Vaccine, 2024; 126564 DOI: 10.1016/j.vaccine.2024.126564.
Predictive equation derived from 6,497 doubly labelled water measurements enables the detection of erroneous self-reported energy intake. Nature Food 2025, 6:58-71. https://doi.org/10.1038/s43016-024-01089-5.
Long-Term Intake of Red Meat in Relation to Dementia Risk and Cognitive Function in US Adults. Neurology 2025, 104:e210286. https://pubmed.ncbi.nlm.nih.gov/39813632.
Willett has stated… quote from “Vegan diet can benefit both health and the environment”, Harvard TC Chan School of Public Health, Jan 8, 2019: https://hsph.harvard.edu/news/vegan-diet-health-environment.
Definition of the Mediterranean Diet; a Literature Review. Nutrients 2015, 7:9139-9153. https://pmc.ncbi.nlm.nih.gov/articles/PMC4663587.
An Evidence Base for Heart Disease Prevention using a Mediterranean Diet Comprised Primarily of Vegetarian Food. Recent Adv Food Nutr Agric 2023, 14:135-143. https://pubmed.ncbi.nlm.nih.gov/37489789.
Cleveland Cinic: https://my.clevelandclinic.org/health/articles/16037-mediterranean-diet.
Plant-Based Diets versus the Mediterranean Dietary Pattern and Their Socio-Demographic Determinants in the Spanish Population: Influence on Health and Lifestyle Habits. Nutrients 2024, 16L https://pubmed.ncbi.nlm.nih.gov/38732525.
NEW PRODUCTS
Utilising a Real-Time Continuous Glucose Monitor as Part of a Low Glycaemic Index and Load Diet and Determining Its Effect on Improving Dietary Intake, Body Composition and Metabolic Parameters of Overweight and Obese Young Adults: A Randomised Controlled Trial. Foods 2022;11(12):1754. Jun 15. https://pubmed.ncbi.nlm.nih.gov/35741952.
ORAL HEALTH
- Nepali oral microbiomes reflect a gradient of lifestyles from traditional to industrialized. Microbiome 2024; 12 (1). DOI: 10.1186/s40168-024-01941-7.
2. The Benefits of Probiotics on Oral Health: Systematic Review of the Literature. Pharmaceuticals (Basel) 2023, Sept 16, 16(9):1313. https://pmc.ncbi.nlm.nih.gov/articles/PMC10534711/ . - Chronic Periodontitis and Immunity, Towards the Implementation of a Personalized Medicine: A Translational Research on Gene Single Nucleotide Polymorphisms (SNPs) Linked to Chronic Oral Dysbiosis in 96 Caucasian Patients. Biomedicines 2020, May 9; 8(5):115. https://pmc.ncbi.nlm.nih.gov/articles/PMC7277173.
4. Contribution of collagen-binding protein Cnm of Streptococcus mutans to induced IgA nephropathy-like nephritis in rats. Communications Biology 2024, 7:1141. https://doi.org/10.1038/s42003-024-06826-x.
5. Caspase-11 mediated inflammasome activation in macrophages by systemic infection of A. actinomycetemcomitans exacerbates arthritis. Int J Oral Science 2024; 16 (1). DOI: 10.1038/s41368-024-00315-x. - Probiotic Supplementation for Rheumatoid Arthritis: A Promising Adjuvant Therapy in the Gut Microbiome Era. Front Pharmacol 2021, 12:711788. https://pmc.ncbi.nlm.nih.gov/articles/PMC8346200/#s4.
- Preparing and Characterizing of Xyloglucan Films Containing Tea Extract for Oral Mucositis. ACS Omega 2024, Dec 19, 10 (1): 390: https://pubs.acs.org/doi/10.1021/acsomega.4c06410.
KRYPTOPYRROLURIA – GILIAN CROWTHER
- Hoffer A. The discovery of kryptopyrrole and its importance in diagnosis of biochemical imbalances in schizophrenia and in criminal behavior.J Orthomol Med. 1995;10 (1):3-6
- https://www.amazon.co.uk/Nutrition-Mental-Illness-Orthomolecular-Balancing/dp/0892812265.
- https://www.integrativepsychiatry.net/health-condition/pyroluria-kryptopyroluria.
- “Kryptopyrroluria (aka Hemopyrrollactamuria) 2017: A Major Piece of the Puzzle in Overcoming Chronic Lyme Disease”, by Scott Forsgren, FDN-P and Dietrich Klinghardt, MD, PhD, https://www.townsendletter.com/July2017/krypto0717.html.
5. https://www.youtube.com/watch?v=THZhANfFnyY: full-length video of Dr. Klinghardt’s on KPU, especially in autism. - https://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&v=8&id=102740#:~:text=A%20typical%20erythrocyte% 20contains%20about,each%20carrying%20four%20heme%20groups
7. https://www.ncbi.nlm.nih.gov/books/NBK2263/#:~:text=Every%20second%2C%202%2D3%20million,containing%204%2D6%20million%20cells - The omega-6/omega-3 fatty acid ratio: health implications. Oléagineux, Corps Gras, Lipides 2010, 17, 267-275.
- Ogun AS, Joy NV, Valentine M. Biochemistry, Heme Synthesis. 2023 May 1. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 30726014.
- Joachim Strienz, “Leben mit KPU – Kryptopyrrolurie” (Living with KPU – Kryptopyrroluria, only available in German).
11. The mauve factor of porphyria, 3-ethyl-5-hydroxy-4, 5-dimethyl-delta-3-pyrroline-2-one: Effects on behaviour of rats and mice.BCPT (Basic & Clinical Pharmacology & Toxicology) 1990, 66(1):66–68. - https://lpi.oregonstate.edu/mic/vitamins/vitamin-B6
- Role of heme in cardiovascular physiology and disease. J Am Heart Assoc 2015 Jan 5;4(1):e001138.
- https://www.galaxus.de/en/s12/product/kpuhpu-common-but-unrecognized-mitochondrial-disorders-kyra-kauffmann-sascha-kauffmann-german-refere-8221719
- KPU/HPU häufige, aber verkannte Mitochondrienstörungen, 3rd edition 2018, Kyra Kauffmann, Sascha Kauffmann
- A possible role of copper in the regulation of heme biosynthesis through ferrochelatase. Adv Exp Med Biol 1975, 58(00):343-54.
- Mineral and vitamin deficiencies can accelerate the mitochondrial decay of aging. Mol Aspects Med 2005, Aug-Oct; 26(4-5):363-78.
- Op cit., Kyra Kauffmann, Sascha Kauffmann
- https://therootcauseprotocol.com/iron-toxicity-post-75-formerly-itp76/
Further literature and resources on KPU:
Clinical significance and importance of elevated urinary kryptopyrroles (UKP): self-reported observations and experience of Australian clinicians using UKP testing. Adv Integr Med 2021; 8 (3): 159–166.
Sixty years of conjecture over a urinary biomarker: a step closer to understanding the proposed link between anxiety and urinary pyrroles. Lab Med 2023 Sep 12:lmad086.
Pyrroles as a Potential Biomarker for Oxidative Stress Disorders. Int J Mol Sci. 2023 Feb 1;24(3):2712.
Clinical Test of Pyrroles in Psychiatric Disorders: Association with Nutritional, Immunological and Metabolic Markers. Journal of Nutritional Therapeutics 2015, 4. 4-11. 10.6000/1929-5634.2015.04.01.2.
Kryptopyrroluria (aka Hemopyrrollactamuria): A Major Piece of the Puzzle in Overcoming Chronic Lyme Disease. Explore 2009, 18 (6).
Gilian Crowther: AONM Cell Symbiosis Therapy (CST) Series Kryptopyrroluria – The Elephant in the Room. Academy of Nutritional Medicine (AONM) 2015.
ADHS/ADS – Kryptopyrrolurie als oft verkannte Ursache. 2013 Symptome.Ch. https://www.symptome.ch/blog/ads-adhs-ursache-kpu.
Hoffmann, K., & Kauffmann, S. (2014). KPU, Kryptopyrrolurie: Eine häufige, aber vergessene Stoffwechselstörung. Hachinger Verlagsgesellschaft.
Kryptopyrrolurie – die nicht beachtete Krankheit. (n.d.). Kpu-berlin.de. https://www.kpu-berlin.de.
RESEARCH UPDATE
Skeletal muscle adiposity, coronary microvascular dysfunction, and adverse cardiovascular outcomes. Eur Heart J 2025, Jan 20:
https://pubmed.ncbi.nlm.nih.gov/39827905.
Associations of preconception air pollution exposure with growth trajectory in young children: A prospective cohort study. Environmental Research 2025, 267:120665. https://www.sciencedirect.com/science/article/pii/S0013935124025696.
Time to Form a Habit: A Systematic Review and Meta-Analysis of Health Behaviour Habit Formation and Its Determinants. Healthcare 2024; 12 (23): 2488, https://www.mdpi.com/2227-9032/12/23/2488.
Persistent symptoms and clinical findings in adults with post-acute sequelae of COVID-19/post-COVID-19 syndrome in the second year after acute infection: A population-based, nested case-control study. PLoS Med 2025, 22(1): e1004511. http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1004511.
Kaempferol Exerts Anti‐Inflammatory Effects by Accelerating Treg Development via Aryl Hydrocarbon Receptor‐Mediated and PU.1/IRF4‐Dependent Transactivation of the Aldh1a2/Raldh2 Gene in Dendritic Cells. Allergy 2024, https://onlinelibrary.wiley.com/doi/10.1111/all.16410.
January 2025
NEWS
Lumbrokinase:
- Data-independent LC-MS/MS analysis of ME/CFS plasma reveals a dysregulated coagulation system, endothelial dysfunction, downregulation of complement machinery. Cardiovasc Diabetol 2024, 23:254. https://pubmed.ncbi.nlm.nih.gov/39014464.
- Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol 2021, 20:172. https://pmc.ncbi.nlm.nih.gov/articles/PMC8381139.
- SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Biosci Rep 2021, 41: https://pmc.ncbi.nlm.nih.gov/articles/PMC8380922.
- A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection. Semin Thromb Hemost 2020, 46:302-319. https://pubmed.ncbi.nlm.nih.gov/32279287.
5. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity. Front Pediatr 2018, 6:373. https://pubmed.ncbi.nlm.nih.gov/30564562.
6. Peptidoglycan recognition by the innate immune system. Nature Rev Immunology 2018, 18: 243-54. https://doi.org/10.1038/nri.2017.136. - Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide. J R Soc Interface 2016, 13: https://pubmed.ncbi.nlm.nih.gov/27605168.
- A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jpn J Physiol 1991, 41:461-472. https://pubmed.ncbi.nlm.nih.gov/1960890.
- Recombinant protein production of earthworm lumbrokinase for potential antithrombotic application. Evid Based Complement Alternat Med 2013, 2013:783971. https://pubmed.ncbi.nlm.nih.gov/24416067.
Pre-diagnosis dietary patterns and risk of multiple myeloma in the NIH-AARP diet and health study. Leukemia 2024, 38:438-441. https://doi.org/10.1038/s41375-023-02132-3.
Association of dietary patterns derived by reduced-rank regression with colorectal cancer risk and mortality. European Journal of Nutrition 2024, 64:33. https://doi.org/10.1007/s00394-024-03513-9.
Difference in Gastrointestinal Cancer Risk and Mortality by Dietary Pattern Analysis: A Systematic Review and Meta-Analysis. Nutrition Reviews 2024. https://doi.org/10.1093/nutrit/nuae090.
“Food industry has infiltrated UK children’s education: stealth marketing exposed”. BMJ 2024, Dec 14, 387: q2661. https://www.bmj.com/content/387/bmj.q2661.
Beta-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain. Cell Chemical Biology 2024 https://doi.org/10.1016/j.chembiol.2024.11.001
A β-hydroxybutyrate shunt pathway generates anti-obesity ketone metabolites. Cell 2024: https://www.sciencedirect.com/science/article/pii/S0092867424012145.
Dietary fructose enhances tumour growth indirectly via interorgan lipid transfer. Nature 2024: https://doi.org/10.1038/s41586-024-08258-3.
EGCG – National Institutes of Health National Centre for Biotechnology Information PubChem website: https://pubchem.ncbi.nlm.nih.gov/compound/Epigallocatechin-Gallate.
IRON
The prevalence and associated mortality of non-anaemic iron deficiency in older adults: a 14 years observational cohort study. Br J Haematol 2020, 189:566-572.
Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med 2013, 3: https://pmc.ncbi.nlm.nih.gov/articles/PMC3685880/#A011866C7.
Forging a field: The golden age of iron biology. Blood 2008, 112: 219–230. https://pmc.ncbi.nlm.nih.gov/articles/PMC2442739.
Iron and Cancer Risk—A Systematic Review and Meta-analysis of the Epidemiological Evidence. Cancer Epidemiology, Biomarkers & Prevention 2014, 23:12-31. https://doi.org/10.1158/1055-9965.EPI-13-0733.
Biting the Iron Bullet: Endoplasmic Reticulum Stress Adds the Pain of Hepcidin to Chronic Liver Disease. Hepatology 2010, 51(2):705-707. www.ncbi.nlm.nih.gov/pmc/articles/PMC2849800/pdf/nihms180510.pdf.
Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World J Biol Chem 2014, 5:204-215.
www.ncbi.nlm.nih.gov/pmc/articles/PMC4050113.
Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 2002, 100:3776-3781. https://doi.org/10.1182/blood-2002-04-1260.
Ageing limits stemness and tumorigenesis by reprogramming iron homeostasis. Nature 2024, Dec 4: https://doi.org/10.1038/s41586-024-08285-0.
GUT HEALTH
Fungal symbiont transmitted by free-living mice promotes type 2 immunity. Nature 2024, Nov 27: https://doi.org/10.1038/s41586-024-08213-2.
Carrageenan and insulin resistance in humans: a randomised double-blind cross-over trial. BMC Medicine 2024, Nov 26, 22 (1), https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-024-03771-8.
Peripheral, but not central, IGF-1 treatment attenuates stroke-induced cognitive impairment in middle-aged female Sprague Dawley rats: The gut as a therapeutic target. Brain, Behavior, and Immunity 2024; 122: 150-166. https://www.sciencedirect.com/science/article/pii/S0889159124005300?via%3Dihub.
Bifidobacterium bifidum Strain BB1 Inhibits Tumor Necrosis Factor-α–Induced Increase in Intestinal Epithelial Tight Junction Permeability via Toll-Like Receptor-2/Toll-Like Receptor-6 Receptor Complex–Dependent Stimulation of Peroxisome Proliferator-Activated Receptor γ and Suppression of NF-κB p65. The American Journal of Pathology 2024, 194:1664-1683. https://doi.org/10.1016/j.ajpath.2024.05.012.
Single-cell integration reveals metaplasia in inflammatory gut diseases. Nature 2024, Nov 20, 635 (8039): 699. https://www.nature.com/articles/s41586-024-07571-1.
Global burden of inflammatory bowel disease. The Lancet 2020, https://pubmed.ncbi.nlm.nih.gov/31648974.
“New research shows over 1 in 123 people in UK living with Crohn’s or Colitis. (2022)”. Crohn’s & Colitis UK: https://crohnsandcolitis.org.uk/news-stories/news-items/new-research-shows-over-1-in-123-people-in-uk-living-with-crohn-s-or-colitis.
Bowel cancer. Bowel Cancer UK – https://www.bowelcanceruk.org.uk/about-bowel-cancer/bowel-cancer.
Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 2024: https://pubmed.ncbi.nlm.nih.gov/36604116.
Oxytocin Analogues for the Oral Treatment of Abdominal Pain. Angew Chem Int Ed Engl 2024:e202415333. https://pubmed.ncbi.nlm.nih.gov/39384545.
Maternal probiotic supplementation protects against PBDE-induced developmental, behavior and metabolic reprogramming in a sexually dimorphic manner: Role of gut microbiome. Archives of Toxicology 2024: https://link.springer.com/article/10.1007/s00204-024-03882-4.
Spatially restricted immune and microbiota-driven adaptation of the gut. Nature 2024, Nov 20: https://doi.org/10.1038/s41586-024-08216-z.
Maternal gut microbiota influence stem cell function in offspring. Cell Stem Cell 2024, Dec 11: https://www.sciencedirect.com/science/article/pii/S1934590924003655.
Gut microbiota patterns associated with duration of diarrhea in children under five years of age in Ethiopia. Nature Communications 2024; 15 (1) https://www.nature.com/articles/s41467-024-51464-w.
THIAMIINE – Dr CHANDLER MARRS
- 1. Refeeding Syndrome: A Critical Reality in Patients with Chronic Disease. Nutrients 2022, 14:2859. https://www.mdpi.com/2072-6643/14/14/2859.
- “Paradoxical Reactions With TTFD: The Methylation Connection”, by Elliot Overton. July 18, 2022L https://hormonesmatter.com/paradoxical-reactions-ttfd-methylation-connection.
- “Paradoxical Reactions With TTFD: The Glutathione Connection”, by Elliot Overton. June 21, 2023: https://hormonesmatter.com/paradoxical-reactions-with-ttfd-the-glutathione-connection.
- Wiley KD, Gupta M. Vitamin B1 (Thiamine) Deficiency. [Updated 2023 Jul 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-: https://www.ncbi.nlm.nih.gov/books/NBK537204.
5. Wet beriberi with multiple organ failure remarkably reversed by thiamine administration: A case report and literature review. Medicine (Baltimore) 2018, 97:e0010. https://pmc.ncbi.nlm.nih.gov/articles/PMC5851725/#!po=18.4211. - Cardiac beriberi: morphological findings in two fatal cases. Diagnostic Pathology 2011, 6:8. https://doi.org/10.1186/1746-1596-6-8.
7. HIF1-α-mediated gene expression induced by vitamin B1 deficiency. Int J Vitam Nutr Res 2013, 83:188-197. https://pubmed.ncbi.nlm.nih.gov/24846908.
8. Abolition of reperfusion-induced arrhythmias in hearts from thiamine-deficient rats. Am J Physiology-Heart and Circulatory Physiology 2007, 293:H394-H401. https://journals.physiology.org/doi/abs/10.1152/ajpheart.00833.2006. - Mitochondrial Ca2+ regulation in the etiology of heart failure: physiological and pathophysiological implications. Acta Pharmacologica Sinica 2020, 41:1301-1309. https://doi.org/10.1038/s41401-020-0476-5.
10. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 2017, 113:411-421. https://pubmed.ncbi.nlm.nih.gov/28395011.
11. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 2014, 159:1253-1262. https://pmc.ncbi.nlm.nih.gov/articles/PMC4765362. - Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 2017, 113:411-421. https://pubmed.ncbi.nlm.nih.gov/28395011.
- Independent modulation of the activity of alpha-ketoglutarate dehydrogenase complex by Ca2+ and Mg2+. Biochemistry 1996, 35:427-432. https://pubmed.ncbi.nlm.nih.gov/8555212.
14. Mitochondrial Ca2+ regulation in the etiology of heart failure: physiological and pathophysiological implications. Acta Pharmacologica Sinica 2020, 41:1301-1309. https://doi.org/10.1038/s41401-020-0476-5. - Mitochondrial Ca2+ regulation in the etiology of heart failure: physiological and pathophysiological implications. Acta Pharmacologica Sinica 2020, 41:1301-1309. https://doi.org/10.1038/s41401-020-0476-5.
16. Abolition of reperfusion-induced arrhythmias in hearts from thiamine-deficient rats. Am J Physiology-Heart and Circulatory Physiology 2007, 293:H394-H401. https://journals.physiology.org/doi/abs/10.1152/ajpheart.00833.2006. - Mitochondrial calcium handling and heart disease in diabetes mellitus. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 2021, 1867:165984. https://www.sciencedirect.com/science/article/pii/S092544392030332X.
- Independent modulation of the activity of alpha-ketoglutarate dehydrogenase complex by Ca2+ and Mg2+. Biochemistry 1996, 35:427-432. https://pubmed.ncbi.nlm.nih.gov/8555212.
19. Mitochondrial calcium handling and heart disease in diabetes mellitus. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 2021, 1867:165984. https://www.sciencedirect.com/science/article/pii/S092544392030332X. - Regulation of mitochondrial dehydrogenases by calcium ions. Biochimica et Biophysica Acta (BBA) – Bioenergetics 2009, 1787:1309-1316. https://www.sciencedirect.com/science/article/pii/S0005272809000127.
- Calcium signaling and cytotoxicity. Environ Health Perspect 1999, 107 Suppl 1:25-35. https://pubmed.ncbi.nlm.nih.gov/10229704.
22. Mitochondrial Ca2+ regulation in the etiology of heart failure: physiological and pathophysiological implications. Acta Pharmacologica Sinica 2020, 41:1301-1309. https://doi.org/10.1038/s41401-020-0476-5. - Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010, 2:a003996. https://pmc.ncbi.nlm.nih.gov/articles/PMC2964179/#abstract1.
- Modulation of cardiac ryanodine receptor channels by alkaline earth cations. PLoS One 2011, 6:e26693. https://pubmed.ncbi.nlm.nih.gov/22039534.
- The Antioxidative Function of Alpha-Ketoglutarate and Its Applications. BioMed Research International 2018, 2018:3408467. https://onlinelibrary.wiley.com/doi/abs/10.1155/2018/3408467.
- Mitochondrial Ca2+ regulation in the etiology of heart failure: physiological and pathophysiological implications. Acta Pharmacologica Sinica 2020, 41:1301-1309. https://doi.org/10.1038/s41401-020-0476-5.
27. Shoshin beri-beri precipitated by intravenous glucose. Crit Care Resusc 2002, 4:31-34. https://pubmed.ncbi.nlm.nih.gov/16573401.
28. Inhibition of mammalian carbonic anhydrase isoforms I, II and VI with thiamine and thiamine-like molecules. J Enzyme Inhib Med Chem 2013, 28:316-319. https://pubmed.ncbi.nlm.nih.gov/22145674. - Carbon dioxide elimination by cardiomyocytes: a tale of high carbonic anhydrase activity and membrane permeability. Acta Physiologica 2017, 221:95-97. https://onlinelibrary.wiley.com/doi/abs/10.1111/apha.12922.
RESEARCH update
Bifidobacterium animalis Probio-M8 improves sarcopenia physical performance by mitigating creatine restrictions imposed by microbial metabolites. npj Biofilms and Microbiomes 2024, 10:144. https://doi.org/10.1038/s41522-024-00618-1.
Bifidobacterium lactis Probio-M8 relieved acute respiratory tract infections in children possibly by modulating the gut microbes and metabolites. Journal of Functional Foods 2024, 115:106111. https://www.sciencedirect.com/science/article/pii/S1756464624001130.
Pregnancy vitamin D supplementation and offspring bone mineral density in childhood follow-up of a randomized controlled trial. The American Journal of Clinical Nutrition 2024; 120 (5): 1134. https://www.sciencedirect.com/science/article/pii/S0002916524007469.
Integration of lipidomics with targeted, single cell, and spatial transcriptomics defines an unresolved pro-inflammatory state in colon cancer. Gut 2024. https://gut.bmj.com/content/gutjnl/early/2024/11/26/gutjnl-2024-332535.full.pdf.
SPMs
- Skarke C, et al. J Lipid Res. 2015, Sep;56(9):1808-20
- Schaller MS, et al. J Clin Lipidol. 2017 Sep -Oct;11(5):1289-1295.
- Del Gobbo LC, et al. JAMA Intern. 2016, 176: 1155?166
- ez-Vicario C, et al. FASEB J. 2019 Jun;33(6):7072-7083.
- Barden AE, et al. Am J Clin Nutr. 2015 Dec;102(6):1357-64.
- Souza PR, et al. Circ Res. 2020 Jan 3;126(1):75-90.
- Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab 2014, 19:21-36. https://pubmed.ncbi.nlm.nih.gov/24239568.
December 2024
WELCOME
Association of dietary niacin intake with the prevalence and incidence of chronic obstructive pulmonary disease. Scientific Reports 2024, 14:2863. https://doi.org/10.1038/s41598-024-53387-4.
“Big Pharma raked in USD 90 billion in profits with COVID-19 vaccines”, by Esther de Haan: https://www.somo.nl/big-pharma-raked-in-usd-90-billion-in-profits-with-covid-19-vaccines.
NEWS
Overnutrition causes insulin resistance and metabolic disorder through increased sympathetic nervous system activity. Cell Metabolism https://doi.org/10.1016/j.cmet.2024.09.012.
CHEMO-PREVENT: https://coloprevent.co.uk.
Cancer chemoprevention: Evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice. Sci Transl Med 2015, 7:298ra117: https://pmc.ncbi.nlm.nih.gov/articles/PMC4827609.
Associations of plasma omega‐6 and omega‐3 fatty acids with overall and 19 site‐specific cancers: A population‐based cohort study in UK Biobank. International Journal of Cancer, 2024; DOI: 10.1002/ijc.35226
A randomized trial of pharmacological ascorbate, gemcitabine, and nab-paclitaxel for metastatic pancreatic cancer. Redox Biology 2024, 77:103375. https://www.sciencedirect.com/science/article/pii/S2213231724003537.
Magnetic Resonance Imaging of Iron Metabolism with T2* Mapping Predicts an Enhanced Clinical Response to Pharmacologic Ascorbate in Patients with GBM. Clin Cancer Res 2024, 30:283-293. https://pubmed.ncbi.nlm.nih.gov/37773633.
Evaluation of pancreatic proteolytic enzyme treatment of adenocarcinoma of the pancreas, with nutrition and detoxification support. Nutr Cancer 1999, 33:117-124. https://pubmed.ncbi.nlm.nih.gov/10368805.
Content of Selected Nutrients and Potential Contaminants in Prenatal Multivitamins and Minerals: an Observational Study. The American Journal of Clinical Nutrition 2024, Nov 19: https://www.sciencedirect.com/science/article/abs/pii/S0002916524008852.
Choline: Exploring the Growing Science on Its Benefits for Moms and Babies. Nutrients 2019, 11: https://pmc.ncbi.nlm.nih.gov/articles/PMC6722688.
Choline Supplementation in Pregnancy: Current Evidence and Implications. Cureus 2023, 15:e48538: https://pmc.ncbi.nlm.nih.gov/articles/PMC10709661.
Dietary zinc deficiency promotes Acinetobacter baumannii lung infection via IL-13 in mice. Nature Microbiology 2024, Nov 15: https://doi.org/10.1038/s41564-024-01849-w.
Iatrogenic copper deficiency: Risks and cautions with zinc prescribing. British Journal of Clinical Pharmacology 2023, 89:2825-2829. https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bcp.15749.
A kidney-specific fasting-mimicking diet induces podocyte reprogramming and restores renal function in glomerulopathy. Science Translational Medicine 2024, 16:eadl5514. https://www.science.org/doi/abs/10.1126/scitranslmed.adl5514.
LIVER
- 1.Sharma A., Nagalli S. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2023. Chronic Liver Disease. [PubMed] [Google Scholar]
- 2.Cheung K., Lee S.S., Raman M. Prevalence and Mechanisms of Malnutrition in Patients with Advanced Liver Disease, and Nutrition Management Strategies. Clin. Gastroenterol. Hepatol. 2012;10:117–125. doi: 10.1016/j.cgh.2011.08.016. [DOI] [PubMed] [Google Scholar]
- 3.Younossi Z., Tacke F., Arrese M., Chander Sharma B., Mostafa I., Bugianesi E., Wai-Sun Wong V., Yilmaz Y., George J., Fan J., et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology. 2019;69:2672–2682. doi: 10.1002/hep.30251. [DOI] [PubMed] [Google Scholar]
- 4.Shergill R., Syed W., Rizvi S.A., Singh I. Nutritional Support in Chronic Liver Disease and Cirrhotics. World J. Hepatol. 2018;10:685–694. doi: 10.4254/wjh.v10.i10.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Bischoff S.C., Bernal W., Dasarathy S., Merli M., Plank L.D., Schütz T., Plauth M. ESPEN Practical Guideline: Clinical Nutrition in Liver Disease. Clin. Nutr. 2020;39:3533–3562. doi: 10.1016/j.clnu.2020.09.001. [DOI] [PubMed] [Google Scholar]
- 6.Merli M., Berzigotti A., Zelber-Sagi S., Dasarathy S., Montagnese S., Genton L., Plauth M., Parés A. EASL Clinical Practice Guidelines on Nutrition in Chronic Liver Disease. J. Hepatol. 2019;70:172–193. doi: 10.1016/j.jhep.2018.06.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Anand A.C. Nutrition and Muscle in Cirrhosis. J. Clin. Exp. Hepatol. 2017;7:340–357. doi: 10.1016/j.jceh.2017.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Banales J.M., Marin J.J.G., Lamarca A., Rodrigues P.M., Khan S.A., Roberts L.R., Cardinale V., Carpino G., Andersen J.B., Braconi C., et al. Cholangiocarcinoma 2020: The next Horizon in Mechanisms and Management. Nat. Rev. Gastroenterol. Hepatol. 2020;17:557–588. doi: 10.1038/s41575-020-0310-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Zori A.G., Yang D., Draganov P.V., Cabrera R. Advances in the Management of Cholangiocarcinoma. World J. Hepatol. 2021;13:1003–1018. doi: 10.4254/wjh.v13.i9.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Khan A.S., Dageforde L.A. Cholangiocarcinoma. Surg. Clin. N. Am. 2019;99:315–335. doi: 10.1016/j.suc.2018.12.004. [DOI] [PubMed] [Google Scholar]
- 11.Goyal L., Kongpetch S., Crolley V.E., Bridgewater J. Targeting FGFR Inhibition in Cholangiocarcinoma. Cancer Treat. Rev. 2021;95:102170. doi: 10.1016/j.ctrv.2021.102170. [DOI] [PubMed] [Google Scholar]
- 12.Noguchi D., Kuriyama N., Nakagawa Y., Maeda K., Shinkai T., Gyoten K., Hayasaki A., Fujii T., Iizawa Y., Tanemura A., et al. The Prognostic Impact of Lymphocyte-to-C-Reactive Protein Score in Patients Undergoing Surgical Resection for Intrahepatic Cholangiocarcinoma: A Comparative Study of Major Representative Inflammatory/Immunonutritional Markers. PLoS ONE. 2021;16:e0245946. doi: 10.1371/journal.pone.0245946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Ma B.-Q., Chen S.-Y., Jiang Z.-B., Wu B., He Y., Wang X.-X., Li Y., Gao P., Yang X.-J. Effect of Postoperative Early Enteral Nutrition on Clinical Outcomes and Immune Function of Cholangiocarcinoma Patients with Malignant Obstructive Jaundice. World J. Gastroenterol. 2020;26:7405–7415. doi: 10.3748/wjg.v26.i46.7405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Cereda E., Cappello S., Colombo S., Klersy C., Imarisio I., Turri A., Caraccia M., Borioli V., Monaco T., Benazzo M., et al. Nutritional Counseling with or without Systematic Use of Oral Nutritional Supplements in Head and Neck Cancer Patients Undergoing Radiotherapy. Radiother. Oncol. 2018;126:81–88. doi: 10.1016/j.radonc.2017.10.015. [DOI] [PubMed] [Google Scholar]
- 15.August D.A., Huhmann M.B., American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Board of Directors Clinical Guidelines: Nutrition Support Therapy during Adult Anticancer Treatment and in Hematopoietic Cell Transplantation. JPEN J. Parenter. Enter. Nutr. 2009;33:472–500. doi: 10.1177/0148607109341804. [DOI] [PubMed] [Google Scholar]
- 16.Kim S.H., Lee S.M., Jeung H.C., Lee I.J., Park J.S., Song M., Lee D.K., Lee S.-M. The Effect of Nutrition Intervention with Oral Nutritional Supplements on Pancreatic and Bile Duct Cancer Patients Undergoing Chemotherapy. Nutrients. 2019;11:1145. doi: 10.3390/nu11051145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Kaźmierczak-Siedlecka K., Daca A., Folwarski M., Makarewicz W., Lebiedzińska A. Immunonutritional Support as an Important Part of Multidisciplinary Anti-Cancer Therapy. Cent. Eur. J. Immunol. 2020;45:454–460. doi: 10.5114/ceji.2020.103339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Zhuang P., Zhang Y., Shou Q., Li H., Zhu Y., He L., Chen J., Jiao J. Eicosapentaenoic and Docosahexaenoic Acids Differentially Alter Gut Microbiome and Reverse High-Fat Diet-Induced Insulin Resistance. Mol. Nutr. Food Res. 2020;64:e1900946. doi: 10.1002/mnfr.201900946. [DOI] [PubMed] [Google Scholar]
- 19.Yao L., Han C., Song K., Zhang J., Lim K., Wu T. Omega-3 Polyunsaturated Fatty Acids Upregulate 15-PGDH Expression in Cholangiocarcinoma Cells by Inhibiting MiR-26a/b Expression. Cancer Res. 2015;75:1388–1398. doi: 10.1158/0008-5472.CAN-14-2561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Tai H.-H., Chi X., Tong M. Regulation of 15-Hydroxyprostaglandin Dehydrogenase (15-PGDH) by Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Prostaglandins Other Lipid Mediat. 2011;96:37–40. doi: 10.1016/j.prostaglandins.2011.06.005. [DOI] [PubMed] [Google Scholar]
- 21.Abe K., Uwagawa T., Haruki K., Takano Y., Onda S., Sakamoto T., Gocho T., Yanaga K. Effects of ω-3 Fatty Acid Supplementation in Patients with Bile Duct or Pancreatic Cancer Undergoing Chemotherapy. Anticancer Res. 2018;38:2369–2375. doi: 10.21873/anticanres.12485. [DOI] [PubMed] [Google Scholar]
- 22.Pouwels S., Sakran N., Graham Y., Leal A., Pintar T., Yang W., Kassir R., Singhal R., Mahawar K., Ramnarain D. Non-Alcoholic Fatty Liver Disease (NAFLD): A Review of Pathophysiology, Clinical Management and Effects of Weight Loss. BMC Endocr. Disord. 2022;22:63. doi: 10.1186/s12902-022-00980-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Schattenberg J.M., Anstee Q.M., Caussy C., Bugianesi E., Popovic B. Differences between Current Clinical Guidelines for Screening, Diagnosis and Management of Nonalcoholic Fatty Liver Disease and Real-World Practice: A Targeted Literature Review. Expert Rev. Gastroenterol. Hepatol. 2021;15:1253–1266. doi: 10.1080/17474124.2021.1974295. [DOI] [PubMed] [Google Scholar]
- 24.Riazi K., Azhari H., Charette J.H., Underwood F.E., King J.A., Afshar E.E., Swain M.G., Congly S.E., Kaplan G.G., Shaheen A.-A. The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2022;7:851–861. doi: 10.1016/S2468-1253(22)00165-0. [DOI] [PubMed] [Google Scholar]
- 25.Gershuni V.M., Yan S.L., Medici V. Nutritional Ketosis for Weight Management and Reversal of Metabolic Syndrome. Curr. Nutr. Rep. 2018;7:97–106. doi: 10.1007/s13668-018-0235-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Bauer K.C., Littlejohn P.T., Ayala V., Creus-Cuadros A., Finlay B.B. Nonalcoholic Fatty Liver Disease and the Gut-Liver Axis: Exploring an Undernutrition Perspective. Gastroenterology. 2022;162:1858–1875.e2. doi: 10.1053/j.gastro.2022.01.058. [DOI] [PubMed] [Google Scholar]
- 32.Chen F., Esmaili S., Rogers G.B., Bugianesi E., Petta S., Marchesini G., Bayoumi A., Metwally M., Azardaryany M.K., Coulter S., et al. Lean NAFLD: A Distinct Entity Shaped by Differential Metabolic Adaptation. Hepatology. 2020;71:1213–1227. doi: 10.1002/hep.30908. [DOI] [PubMed] [Google Scholar]
- 33.Fitriakusumah Y., Lesmana C.R.A., Bastian W.P., Jasirwan C.O.M., Hasan I., Simadibrata M., Kurniawan J., Sulaiman A.S., Gani R.A. The Role of Small Intestinal Bacterial Overgrowth (SIBO) in Non-Alcoholic Fatty Liver Disease (NAFLD) Patients Evaluated Using Controlled Attenuation Parameter (CAP) Transient Elastography (TE): A Tertiary Referral Center Experience. BMC Gastroenterol. 2019;19:43. doi: 10.1186/s12876-019-0960-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Kessoku T., Kobayashi T., Imajo K., Tanaka K., Yamamoto A., Takahashi K., Kasai Y., Ozaki A., Iwaki M., Nogami A., et al. Endotoxins and Non-Alcoholic Fatty Liver Disease. Front. Endocrinol. 2021;12:770986. doi: 10.3389/fendo.2021.770986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Frost F., Kacprowski T., Rühlemann M., Pietzner M., Bang C., Franke A., Nauck M., Völker U., Völzke H., Dörr M., et al. Long-Term Instability of the Intestinal Microbiome Is Associated with Metabolic Liver Disease, Low Microbiota Diversity, Diabetes Mellitus and Impaired Exocrine Pancreatic Function. Gut. 2021;70:522–530. doi: 10.1136/gutjnl-2020-322753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.An L., Wirth U., Koch D., Schirren M., Drefs M., Koliogiannis D., Nieß H., Andrassy J., Guba M., Bazhin A.V., et al. The Role of Gut-Derived Lipopolysaccharides and the Intestinal Barrier in Fatty Liver Diseases. J. Gastrointest. Surg. 2022;26:671–683. doi: 10.1007/s11605-021-05188-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Plauth M., Bernal W., Dasarathy S., Merli M., Plank L.D., Schütz T., Bischoff S.C. ESPEN Guideline on Clinical Nutrition in Liver Disease. Clin. Nutr. 2019;38:485–521. doi: 10.1016/j.clnu.2018.12.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Associazione Italiana per lo Studio del Fegato (AISF) Società Italiana di Diabetologia (SID) Società Italiana dell’Obesità (SIO) Members of the Guidelines Panel. Coordinator. AISF Members. SID Members. SIO Members Metodologists Non-Alcoholic Fatty Liver Disease in Adults 2021: A Clinical Practice Guideline of the Italian Association for the Study of the Liver (AISF), the Italian Society of Diabetology (SID) and the Italian Society of Obesity (SIO) Nutr. Metab. Cardiovasc. Dis. 2022;32:1–16. doi: 10.1016/j.numecd.2021.04.028. [DOI] [PubMed] [Google Scholar]
- 46.Abenavoli L., Boccuto L., Federico A., Dallio M., Loguercio C., Di Renzo L., De Lorenzo A. Diet and Non-Alcoholic Fatty Liver Disease: The Mediterranean Way. Int. J. Environ. Res. Public Health. 2019;16:3011. doi: 10.3390/ijerph16173011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Cândido F.G., Valente F.X., Grześkowiak Ł.M., Moreira A.P.B., Rocha D.M.U.P., Alfenas R.D.C.G. Impact of Dietary Fat on Gut Microbiota and Low-Grade Systemic Inflammation: Mechanisms and Clinical Implications on Obesity. Int. J. Food Sci. Nutr. 2018;69:125–143. doi: 10.1080/09637486.2017.1343286. [DOI] [PubMed] [Google Scholar]
- 48.Yaskolka Meir A., Rinott E., Tsaban G., Zelicha H., Kaplan A., Rosen P., Shelef I., Youngster I., Shalev A., Blüher M., et al. Effect of Green-Mediterranean Diet on Intrahepatic Fat: The DIRECT PLUS Randomised Controlled Trial. Gut. 2021;70:2085–2095. doi: 10.1136/gutjnl-2020-323106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Pérez-Guisado J., Muñoz-Serrano A. The Effect of the Spanish Ketogenic Mediterranean Diet on Nonalcoholic Fatty Liver Disease: A Pilot Study. J. Med. Food. 2011;14:677–680. doi: 10.1089/jmf.2011.0075. [DOI] [PubMed] [Google Scholar]
- 50.Xie Z., Sun Y., Ye Y., Hu D., Zhang H., He Z., Zhao H., Yang H., Mao Y. Randomized Controlled Trial for Time-Restricted Eating in Healthy Volunteers without Obesity. Nat. Commun. 2022;13:1003. doi: 10.1038/s41467-022-28662-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Jamshed H., Beyl R.A., Della Manna D.L., Yang E.S., Ravussin E., Peterson C.M. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients. 2019;11:1234. doi: 10.3390/nu11061234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Sutton E.F., Beyl R., Early K.S., Cefalu W.T., Ravussin E., Peterson C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018;27:1212–1221.e3. doi: 10.1016/j.cmet.2018.04.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Lee C.-H., Fu Y., Yang S.-J., Chi C.-C. Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation on Non-Alcoholic Fatty Liver: A Systematic Review and Meta-Analysis. Nutrients. 2020;12:2769. doi: 10.3390/nu12092769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Medina-Urrutia A., Lopez-Uribe A.R., El Hafidi M., González-Salazar M.D.C., Posadas-Sánchez R., Jorge-Galarza E., Del Valle-Mondragón L., Juárez-Rojas J.G. Chia (Salvia hispanica)-Supplemented Diet Ameliorates Non-Alcoholic Fatty Liver Disease and Its Metabolic Abnormalities in Humans. Lipids Health Dis. 2020;19:96. doi: 10.1186/s12944-020-01283-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Scorletti E., Afolabi P.R., Miles E.A., Smith D.E., Almehmadi A., Alshathry A., Childs C.E., Del Fabbro S., Bilson J., Moyses H.E., et al. Synbiotics Alter Fecal Microbiomes, But Not Liver Fat or Fibrosis, in a Randomized Trial of Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology. 2020;158:1597–1610.e7. doi: 10.1053/j.gastro.2020.01.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Asadi-Samani M., Kafash-Farkhad N., Azimi N., Fasihi A., Alinia-Ahandani E., Rafieian-Kopaei M. Medicinal Plants with Hepatoprotective Activity in Iranian Folk Medicine. Asian Pac. J. Trop. Biomed. 2015;5:146–157. doi: 10.1016/S2221-1691(15)30159-3. [DOI] [Google Scholar]
- 57.Kaur A.P., Bhardwaj S., Dhanjal D.S., Nepovimova E., Cruz-Martins N., Kuča K., Chopra C., Singh R., Kumar H., Șen F., et al. Plant Prebiotics and Their Role in the Amelioration of Diseases. Biomolecules. 2021;11:440. doi: 10.3390/biom11030440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Almatroodi S.A., Anwar S., Almatroudi A., Khan A.A., Alrumaihi F., Alsahli M.A., Rahmani A.H. Hepatoprotective Effects of Garlic Extract against Carbon Tetrachloride (CCl4)-Induced Liver Injury via Modulation of Antioxidant, Anti-Inflammatory Activities and Hepatocyte Architecture. Appl. Sci. 2020;10:6200. doi: 10.3390/app10186200. [DOI] [Google Scholar]
- 59.Dwivedi S., Sahrawat K., Puppala N., Ortiz R. Plant Prebiotics and Human Health: Biotechnology to Breed Prebiotic-Rich Nutritious Food Crops. Electron. J. Biotechnol. 2014;17:238–245. doi: 10.1016/j.ejbt.2014.07.004. [DOI] [Google Scholar]
- 61.Chakraborty R., Vickery K., Darido C., Ranganathan S., Hu H. Bacterial Antigens Reduced the Inhibition Effect of Capsaicin on Cal 27 Oral Cancer Cell Proliferation. Int. J. Mol. Sci. 2021;22:8686. doi: 10.3390/ijms22168686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Eswar Kumar K., Harsha K.N., Sudheer V., Giri Babu N. In Vitro Antioxidant Activity and in Vivo Hepatoprotective Activity of Aqueous Extract of Allium Cepa Bulb in Ethanol Induced Liver Damage in Wistar Rats. Food Sci. Hum. Wellness. 2013;2:132–138. doi: 10.1016/j.fshw.2013.10.001. [DOI] [Google Scholar]
- 63.Krepkova L.V., Babenko A.N., Saybel’ O.L., Lupanova I.A., Kuzina O.S., Job K.M., Sherwin C.M., Enioutina E.Y. Valuable Hepatoprotective Plants—How Can We Optimize Waste Free Uses of Such Highly Versatile Resources? Front. Pharmacol. 2021;12:738504. doi: 10.3389/fphar.2021.738504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Costea L., Chițescu C.L., Boscencu R., Ghica M., Lupuliasa D., Mihai D.P., Deculescu-Ioniță T., Duțu L.E., Popescu M.L., Luță E.-A., et al. The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential. Plants. 2022;11:1680. doi: 10.3390/plants11131680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Kamal F.Z., Lefter R., Mihai C.-T., Farah H., Ciobica A., Ali A., Radu I., Mavroudis I., Ech-Chahad A. Chemical Composition, Antioxidant and Antiproliferative Activities of Taraxacum officinale Essential Oil. Molecules. 2022;27:6477. doi: 10.3390/molecules27196477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Ghorbel Koubaa F., Chaâbane M., Choura B., Turki M., Makni-Ayadi F., El Feki A. Hepatoprotective Effects of Taraxacum officinale Root Extract on Permethrin-Induced Liver Toxicity in Adult Mice. Pharm. Biomed. Res. 2020;6:223–236. doi: 10.18502/pbr.v6i3.4649. [DOI] [Google Scholar]
- 68.Maletha D., Singh S.P., Ramanarayanan S. Hepatoprotective and Nephroprotective Efficacy of Cichorium intybus Following Imidacloprid Induced Subchronic Toxicity in WLH Cockerels. Indian J. Anim. Sci. 2022;92:940–945. doi: 10.56093/ijans.v92i8.123891. [DOI] [Google Scholar]
- 70.Yang L., Kang X., Dong W., Wang L., Liu S., Zhong X., Liu D. Prebiotic Properties of Ganoderma lucidum Polysaccharides with Special Enrichment of Bacteroides ovatus and B. uniformis in Vitro. J. Funct. Foods. 2022;92:105069. doi: 10.1016/j.jff.2022.105069. [DOI] [Google Scholar]
- 71.Lv X.-C., Wu Q., Cao Y.-J., Lin Y.-C., Guo W.-L., Rao P.-F., Zhang Y.-Y., Chen Y.-T., Ai L.-Z., Ni L. Ganoderic Acid A from Ganoderma lucidum Protects against Alcoholic Liver Injury through Ameliorating the Lipid Metabolism and Modulating the Intestinal Microbial Composition. Food Funct. 2022;13:5820–5837. doi: 10.1039/D1FO03219D. [DOI] [PubMed] [Google Scholar]
- 72.Peng H., Zhong L., Cheng L., Chen L., Tong R., Shi J., Bai L. Ganoderma lucidum: Current Advancements of Characteristic Components and Experimental Progress in Anti-Liver Fibrosis. Front. Pharmacol. 2023;13:1094405. doi: 10.3389/fphar.2022.1094405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Chen T.Q., Wu J.-G., Kan Y.-J., Yang C., Wu Y.-B., Wu J.-Z. Antioxidant and Hepatoprotective Activities of Crude Polysaccharide Extracts from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), by Ultrasonic-Circulating Extraction. Int. J. Med. Mushrooms. 2018;20:581–593. doi: 10.1615/IntJMedMushrooms.2018026536. [DOI] [PubMed] [Google Scholar]
- 74.Lu C., Lee B.H., Ren Y., Ji D., Rao S., Li H., Yang Z. Effects of Exopolysaccharides from Antrodia cinnamomea on Inflammation and Intestinal Microbiota Disturbance Induced by Antibiotics in Mice. Food Biosci. 2022;50:102116. doi: 10.1016/j.fbio.2022.102116. [DOI] [Google Scholar]
- 75.Tsai Y.-T., Ruan J.-W., Chang C.-S., Ko M.-L., Chou H.-C., Lin C.-C., Lin C.-M., Huang C.-T., Wei Y.-S., Liao E.-C., et al. Antrodia cinnamomea Confers Obesity Resistance and Restores Intestinal Barrier Integrity in Leptin-Deficient Obese Mice. Nutrients. 2020;12:726. doi: 10.3390/nu12030726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Ho C.-Y., Kuan C.-M., Hsu P.-K. Hepatoprotective Effect of Antrodia cinnamomea Mycelia Extract in Subhealth Japanese Adults: A Randomized, Double-Blind, Placebo-Controlled Clinical Study. J. Diet. Suppl. 2022 doi: 10.1080/19390211.2022.2152147. [DOI] [PubMed] [Google Scholar]
- 77.Chiou Y.-L., Chyau C.-C., Li T.-J., Kuo C.-F., Kang Y.-Y., Chen C.-C., Ko W.-S. Hepatoprotective Effect of Antrodia cinnamomea Mycelium in Patients with Nonalcoholic Steatohepatitis: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Am. Coll. Nutr. 2021;40:349–357. doi: 10.1080/07315724.2020.1779850. [DOI] [PubMed] [Google Scholar]
- 79.Liu Y.-W., Lu K.-H., Ho C.-T., Sheen L.-Y. Protective Effects of Antrodia cinnamomea against Liver Injury. J. Tradit. Complement. Med. 2012;2:284–294. doi: 10.1016/S2225-4110(16)30114-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Ye J., Zhang C., Fan Q., Lin X., Wang Y., Azzam M., Alhotan R., Alqhtani A., Jiang S. Antrodia cinnamomea Polysaccharide Improves Liver Antioxidant, Anti-Inflammatory Capacity, and Cecal Flora Structure of Slow-Growing Broiler Breeds Challenged with Lipopolysaccharide. Front. Vet. Sci. 2022;9:994782. doi: 10.3389/fvets.2022.994782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Tian Y., Nichols R.G., Roy P., Gui W., Smith P.B., Zhang J., Lin Y., Weaver V., Cai J., Patterson A.D., et al. Prebiotic Effects of White Button Mushroom (Agaricus bisporus) Feeding on Succinate and Intestinal Gluconeogenesis in C57BL/6 Mice. J. Funct. Foods. 2018;45:223–232. doi: 10.1016/j.jff.2018.04.008. [DOI] [Google Scholar]
- 83.García-Sanmartín J., Bobadilla M., Mirpuri E., Grifoll V., Pérez-Clavijo M., Martínez A. Agaricus Mushroom-Enriched Diets Modulate the Microbiota-Gut-Brain Axis and Reduce Brain Oxidative Stress in Mice. Antioxidants. 2022;11:695. doi: 10.3390/antiox11040695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Liu Y., Zheng D., Su L., Wang Q., Li Y. Protective Effect of Polysaccharide from Agaricus bisporus in Tibet Area of China against Tetrachloride-Induced Acute Liver Injury in Mice. Int. J. Biol. Macromol. 2018;118:1488–1493. doi: 10.1016/j.ijbiomac.2018.06.179. [DOI] [PubMed] [Google Scholar]
- 85.Li S., Li J., Zhang J., Wang W., Wang X., Jing H., Ren Z., Gao Z., Song X., Gong Z., et al. The Antioxidative, Antiaging, and Hepatoprotective Effects of Alkali-Extractable Polysaccharides by Agaricus bisporus. Evid. Based Complement. Altern. Med. 2017;2017:e7298683. doi: 10.1155/2017/7298683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Huang Y., Gao Y., Pi X., Zhao S., Liu W. In Vitro Hepatoprotective and Human Gut Microbiota Modulation of Polysaccharide-Peptides in Pleurotus citrinopileatus. Front. Cell. Infect. Microbiol. 2022;12:892049. doi: 10.3389/fcimb.2022.892049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Chi Q., Wang G., Sheng Y., Xu W., Shi P., Zhao C., Huang K. Ethanolic Extract of the Golden Oyster Mushroom, Pleurotus citrinopileatus (Agaricomycetes), Alleviates Metabolic Syndrome in Diet-Induced Obese Mice. Int. J. Med. Mushrooms. 2017;19:1001–1008. doi: 10.1615/IntJMedMushrooms.2017024486. [DOI] [PubMed] [Google Scholar]
- 89.Tena-Garitaonaindia M., Ceacero-Heras D., Montoro M.D.M.M., de Medina F.S., Martínez-Augustin O., Daddaoua A. A Standardized Extract of Lentinula Edodes Cultured Mycelium Inhibits Pseudomonas aeruginosa Infectivity Mechanisms. Front. Microbiol. 2022;13:814448. doi: 10.3389/fmicb.2022.814448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Song X., Cai W., Ren Z., Jia L., Zhang J. Antioxidant and Hepatoprotective Effects of Acidic-Hydrolysis Residue Polysaccharides from Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) in Mice. IJM Int. J. Med. Mushrooms. 2021;23:85–96. doi: 10.1615/IntJMedMushrooms.2021037648. [DOI] [PubMed] [Google Scholar]
- 92.D’Amico G., Garcia-Tsao G., Pagliaro L. Natural History and Prognostic Indicators of Survival in Cirrhosis: A Systematic Review of 118 Studies. J. Hepatol. 2006;44:217–231. doi: 10.1016/j.jhep.2005.10.013. [DOI] [PubMed] [Google Scholar]
- 94.Prieto-Frías C., Conchillo M., Payeras M., Iñarrairaegui M., Davola D., Frühbeck G., Salvador J., Rodríguez M., Richter J.Á., Mugueta C., et al. Factors Related to Increased Resting Energy Expenditure in Men with Liver Cirrhosis. Eur. J. Gastroenterol. Hepatol. 2016;28:139–145. doi: 10.1097/MEG.0000000000000516. [DOI] [PubMed] [Google Scholar]
- 95.Peng S., Plank L.D., McCall J.L., Gillanders L.K., McIlroy K., Gane E.J. Body Composition, Muscle Function, and Energy Expenditure in Patients with Liver Cirrhosis: A Comprehensive Study. Am. J. Clin. Nutr. 2007;85:1257–1266. doi: 10.1093/ajcn/85.5.1257. [DOI] [PubMed] [Google Scholar]
- 96.Guglielmi F.W., Panella C., Buda A., Budillon G., Caregaro L., Clerici C., Conte D., Federico A., Gasbarrini G., Guglielmi A., et al. Nutritional State and Energy Balance in Cirrhotic Patients with or without Hypermetabolism. Multicentre Prospective Study by the “Nutritional Problems in Gastroenterology” Section of the Italian Society of Gastroenterology (SIGE) Dig. Liver Dis. 2005;37:681–688. doi: 10.1016/j.dld.2005.03.010. [DOI] [PubMed] [Google Scholar]
- 97.Bhanji R.A., Carey E.J., Yang L., Watt K.D. The Long Winding Road to Transplant: How Sarcopenia and Debility Impact Morbidity and Mortality on the Waitlist. Clin. Gastroenterol. Hepatol. 2017;15:1492–1497. doi: 10.1016/j.cgh.2017.04.004. [DOI] [PubMed] [Google Scholar]
- 98.Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Kim G., Kang S.H., Kim M.Y., Baik S.K. Prognostic Value of Sarcopenia in Patients with Liver Cirrhosis: A Systematic Review and Meta-Analysis. PLoS ONE. 2017;12:e0186990. doi: 10.1371/journal.pone.0186990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.van Vugt J.L.A., Levolger S., de Bruin R.W.F., van Rosmalen J., Metselaar H.J., IJzermans J.N.M. Systematic Review and Meta-Analysis of the Impact of Computed Tomography-Assessed Skeletal Muscle Mass on Outcome in Patients Awaiting or Undergoing Liver Transplantation. Am. J. Transpl. 2016;16:2277–2292. doi: 10.1111/ajt.13732. [DOI] [PubMed] [Google Scholar]
- 102.Chang K.-V., Chen J.-D., Wu W.-T., Huang K.-C., Lin H.-Y., Han D.-S. Is Sarcopenia Associated with Hepatic Encephalopathy in Liver Cirrhosis? A Systematic Review and Meta-Analysis. J. Formos. Med. Assoc. 2019;118:833–842. doi: 10.1016/j.jfma.2018.09.011. [DOI] [PubMed] [Google Scholar]
- 104.Tapper E.B., Jiang Z.G., Patwardhan V.R. Refining the Ammonia Hypothesis: A Physiology-Driven Approach to the Treatment of Hepatic Encephalopathy. Mayo Clin. Proc. 2015;90:646–658. doi: 10.1016/j.mayocp.2015.03.003. [DOI] [PubMed] [Google Scholar]
- 105.Berzigotti A., Garcia-Tsao G., Bosch J., Grace N.D., Burroughs A.K., Morillas R., Escorsell A., Garcia-Pagan J.C., Patch D., Matloff D.S., et al. Obesity Is an Independent Risk Factor for Clinical Decompensation in Patients with Cirrhosis. Hepatology. 2011;54:555–561. doi: 10.1002/hep.24418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Montano-Loza A.J., Angulo P., Meza-Junco J., Prado C.M.M., Sawyer M.B., Beaumont C., Esfandiari N., Ma M., Baracos V.E. Sarcopenic Obesity and Myosteatosis Are Associated with Higher Mortality in Patients with Cirrhosis. J. Cachexia Sarcopenia Muscle. 2016;7:126–135. doi: 10.1002/jcsm.12039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Tantai X., Liu Y., Yeo Y.H., Praktiknjo M., Mauro E., Hamaguchi Y., Engelmann C., Zhang P., Jeong J.Y., van Vugt J.L.A., et al. Effect of Sarcopenia on Survival in Patients with Cirrhosis: A Meta-Analysis. J. Hepatol. 2022;76:588–599. doi: 10.1016/j.jhep.2021.11.006. [DOI] [PubMed] [Google Scholar]
- 110.Periyalwar P., Dasarathy S. Malnutrition in Cirrhosis: Contribution and Consequences of Sarcopenia on Metabolic and Clinical Responses. Clin. Liver Dis. 2012;16:95–131. doi: 10.1016/j.cld.2011.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Sam J., Nguyen G.C. Protein-Calorie Malnutrition as a Prognostic Indicator of Mortality among Patients Hospitalized with Cirrhosis and Portal Hypertension. Liver Int. 2009;29:1396–1402. doi: 10.1111/j.1478-3231.2009.02077.x. [DOI] [PubMed] [Google Scholar]
- 114.Ribeiro H.S., Maurício S.F., Antônio da Silva T., de Vasconcelos Generoso S., Lima A.S., Toulson Davisson Correia M.I. Combined Nutritional Assessment Methods to Predict Clinical Outcomes in Patients on the Waiting List for Liver Transplantation. Nutrition. 2018;47:21–26. doi: 10.1016/j.nut.2017.09.014. [DOI] [PubMed] [Google Scholar]
- 116.Ruiz-Margáin A., Macías-Rodríguez R.U., Ampuero J., Cubero F.J., Chi-Cervera L., Ríos-Torres S.L., Duarte-Rojo A., Espinosa-Cuevas Á., Romero-Gómez M., Torre A. Low Phase Angle Is Associated with the Development of Hepatic Encephalopathy in Patients with Cirrhosis. World J. Gastroenterol. 2016;22:10064–10070. doi: 10.3748/wjg.v22.i45.10064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Lindqvist C., Majeed A., Wahlin S. Body Composition Assessed by Dual-Energy X-ray Absorptiometry Predicts Early Infectious Complications after Liver Transplantation. J. Hum. Nutr. Diet. 2017;30:284–291. doi: 10.1111/jhn.12417. [DOI] [PubMed] [Google Scholar]
- 118.Johnston H.E., Takefala T.G., Kelly J.T., Keating S.E., Coombes J.S., Macdonald G.A., Hickman I.J., Mayr H.L. The Effect of Diet and Exercise Interventions on Body Composition in Liver Cirrhosis: A Systematic Review. Nutrients. 2022;14:3365. doi: 10.3390/nu14163365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Yu B., Wang J. The Efficacy of Parenteral Nutrition (PN) and Enteral Nutrition (EN) Supports in Cirrhosis: A Systematic Review and Network Meta-Analysis. Medicine. 2022;101:e28618. doi: 10.1097/MD.0000000000028618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Bowen T.S., Schuler G., Adams V. Skeletal Muscle Wasting in Cachexia and Sarcopenia: Molecular Pathophysiology and Impact of Exercise Training. J. Cachexia Sarcopenia Muscle. 2015;6:197–207. doi: 10.1002/jcsm.12043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Williams F.R., Berzigotti A., Lord J.M., Lai J.C., Armstrong M.J. Review Article: Impact of Exercise on Physical Frailty in Patients with Chronic Liver Disease. Aliment. Pharmacol. Ther. 2019;50:988–1000. doi: 10.1111/apt.15491. [DOI] [PubMed] [Google Scholar]
- 123.Plank L.D., Gane E.J., Peng S., Muthu C., Mathur S., Gillanders L., McIlroy K., Donaghy A.J., McCall J.L. Nocturnal Nutritional Supplementation Improves Total Body Protein Status of Patients with Liver Cirrhosis: A Randomized 12-Month Trial. Hepatology. 2008;48:557–566. doi: 10.1002/hep.22367. [DOI] [PubMed] [Google Scholar]
- 125.Guo Y.-J., Tian Z.-B., Jiang N., Ding X.-L., Mao T., Jing X. Effects of Late Evening Snack on Cirrhotic Patients: A Systematic Review and Meta-Analysis. Gastroenterol. Res. Pract. 2018;2018:9189062. doi: 10.1155/2018/9189062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Verboeket-van de Venne W.P., Westerterp K.R., van Hoek B., Swart G.R. Energy Expenditure and Substrate Metabolism in Patients with Cirrhosis of the Liver: Effects of the Pattern of Food Intake. Gut. 1995;36:110–116. doi: 10.1136/gut.36.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Zenith L., Meena N., Ramadi A., Yavari M., Harvey A., Carbonneau M., Ma M., Abraldes J.G., Paterson I., Haykowsky M.J., et al. Eight Weeks of Exercise Training Increases Aerobic Capacity and Muscle Mass and Reduces Fatigue in Patients with Cirrhosis. Clin. Gastroenterol. Hepatol. 2014;12:1920–1926.e2. doi: 10.1016/j.cgh.2014.04.016. [DOI] [PubMed] [Google Scholar]
- 128.Aamann L., Dam G., Borre M., Drljevic-Nielsen A., Overgaard K., Andersen H., Vilstrup H., Aagaard N.K. Resistance Training Increases Muscle Strength and Muscle Size in Patients with Liver Cirrhosis. Clin. Gastroenterol. Hepatol. 2020;18:1179–1187.e6. doi: 10.1016/j.cgh.2019.07.058. [DOI] [PubMed] [Google Scholar]
- 130.Ichikawa K., Okabayashi T., Maeda H., Namikawa T., Iiyama T., Sugimoto T., Kobayashi M., Mimura T., Hanazaki K. Oral Supplementation of Branched-Chain Amino Acids Reduces Early Recurrence after Hepatic Resection in Patients with Hepatocellular Carcinoma: A Prospective Study. Surg. Today. 2013;43:720–726. doi: 10.1007/s00595-012-0288-4. [DOI] [PubMed] [Google Scholar]
- 132.Agarwal A., Avarebeel S., Choudhary N.S., Goudar M., Tejaswini C.J. Correlation of Trace Elements in Patients of Chronic Liver Disease with Respect to Child-Turcotte-Pugh Scoring System. J. Clin. Diagn. Res. 2017;11:OC25–OC28. doi: 10.7860/JCDR/2017/26519.10655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Loguercio C., De Girolamo V., Federico A., Feng S.L., Crafa E., Cataldi V., Gialanella G., Moro R., Del Vecchio Blanco C. Relationship of Blood Trace Elements to Liver Damage, Nutritional Status, and Oxidative Stress in Chronic Nonalcoholic Liver Disease. Biol. Trace Elem. Res. 2001;81:245–254. doi: 10.1385/BTER:81:3:245. [DOI] [PubMed] [Google Scholar]
- 134.Yoshida Y., Higashi T., Nouso K., Nakatsukasa H., Nakamura S.I., Watanabe A., Tsuji T. Effects of Zinc Deficiency/Zinc Supplementation on Ammonia Metabolism in Patients with Decompensated Liver Cirrhosis. Acta Med. Okayama. 2001;55:349–355. doi: 10.18926/AMO/32003. [DOI] [PubMed] [Google Scholar]
- 135.Nangliya V., Sharma A., Yadav D., Sunder S., Nijhawan S., Mishra S. Study of Trace Elements in Liver Cirrhosis Patients and Their Role in Prognosis of Disease. Biol. Trace Elem. Res. 2015;165:35–40. doi: 10.1007/s12011-015-0237-3. [DOI] [PubMed] [Google Scholar]
- 137.Teriaky A., Mosli M., Chandok N., Al-Judaibi B., Marotta P., Qumosani K. Prevalence of Fat-Soluble Vitamin (A, D, and E) and Zinc Deficiency in Patients with Cirrhosis Being Assessed for Liver Transplantation. Acta Gastroenterol. Belg. 2017;80:237–241. [PubMed] [Google Scholar]
- 139.Nelson J.E., Roth C.L., Wilson L.A., Yates K.P., Aouizerat B., Morgan-Stevenson V., Whalen E., Hoofnagle A., Mason M., Gersuk V., et al. Vitamin D Deficiency Is Associated with Increased Risk of Non-Alcoholic Steatohepatitis in Adults with Non-Alcoholic Fatty Liver Disease: Possible Role for MAPK and NF-ΚB? Am. J. Gastroenterol. 2016;111:852–863. doi: 10.1038/ajg.2016.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Park D., Kwon H., Oh S.W., Joh H.K., Hwang S.S., Park J.H., Yun J.M., Lee H., Chung G.E., Ze S., et al. Is Vitamin D an Independent Risk Factor of Nonalcoholic Fatty Liver Disease? A Cross-Sectional Study of the Healthy Population. J. Korean Med. Sci. 2017;32:95–101. doi: 10.3346/jkms.2017.32.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Les I., Doval E., García-Martínez R., Planas M., Cárdenas G., Gómez P., Flavià M., Jacas C., Mínguez B., Vergara M., et al. Effects of Branched-Chain Amino Acids Supplementation in Patients with Cirrhosis and a Previous Episode of Hepatic Encephalopathy: A Randomized Study. Am. J. Gastroenterol. 2011;106:1081–1088. doi: 10.1038/ajg.2011.9. [DOI] [PubMed] [Google Scholar]
- 144.Directive 2010/45/EU of the European Parliament and of the Council of 7 July 2010 on Standards of Quality and Safety of Human Organs Intended for Transplantation. Volume 207 Official Journal of the European Union; Luxembourg: 2010. [Google Scholar]
- 146.Ney M., Abraldes J.G., Ma M., Belland D., Harvey A., Robbins S., Den Heyer V., Tandon P. Insufficient Protein Intake Is Associated with Increased Mortality in 630 Patients with Cirrhosis Awaiting Liver Transplantation. Nutr. Clin. Pract. 2015;30:530–536. doi: 10.1177/0884533614567716. [DOI] [PubMed] [Google Scholar]
- 147.Bayramov N., Mammadova S. A Review of the Current ERAS Guidelines for Liver Resection, Liver Transplantation and Pancreatoduodenectomy. Ann. Med. Surg. 2022;82:104596. doi: 10.1016/j.amsu.2022.104596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Bischoff S.C., Barazzoni R., Busetto L., Campmans-Kuijpers M., Cardinale V., Chermesh I., Eshraghian A., Kani H.T., Khannoussi W., Lacaze L., et al. European Guideline on Obesity Care in Patients with Gastrointestinal and Liver Diseases—Joint ESPEN/UEG Guideline. Clin. Nutr. 2022;41:2364–2405. doi: 10.1016/j.clnu.2022.07.003. [DOI] [PubMed] [Google Scholar]
- 149.Ostrowska J., Jeznach-Steinhagen A. Niedożywienie szpitalne. Metody oceny stanu odżywienia. Forum. Med. Rodz. 2017;11:54–61. [Google Scholar]
- 151.Brustia R., Monsel A., Skurzak S., Schiffer E., Carrier F.M., Patrono D., Kaba A., Detry O., Malbouisson L., Andraus W., et al. Guidelines for Perioperative Care for Liver Transplantation: Enhanced Recovery After Surgery (ERAS) Recommendations. Transplantation. 2022;106:552–561. doi: 10.1097/TP.0000000000003808. [DOI] [PubMed] [Google Scholar]
- 152.Melloul E., Hübner M., Scott M., Snowden C., Prentis J., Dejong C.H.C., Garden O.J., Farges O., Kokudo N., Vauthey J.-N., et al. Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations. World J. Surg. 2016;40:2425–2440. doi: 10.1007/s00268-016-3700-1. [DOI] [PubMed] [Google Scholar]
- 153.Song G.-M., Tian X., Zhang L., Ou Y.-X., Yi L.-J., Shuai T., Zhou J.-G., Zeng Z., Yang H.-L. Immunonutrition Support for Patients Undergoing Surgery for Gastrointestinal Malignancy: Preoperative, Postoperative, or Perioperative? A Bayesian Network Meta-Analysis of Randomized Controlled Trials. Medicine. 2015;94:e1225. doi: 10.1097/MD.0000000000001225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Joliat G.-R., Kobayashi K., Hasegawa K., Thomson J.-E., Padbury R., Scott M., Brustia R., Scatton O., Tran Cao H.S., Vauthey J.-N., et al. Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery after Surgery (ERAS) Society Recommendations 2022. World J. Surg. 2023;47:11–34. doi: 10.1007/s00268-022-06732-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Weimann A., Breitenstein S., Breuer J.P., Gabor S.E., Holland-Cunz S., Kemen M., Längle F., Rayes N., Reith B., Rittler P., et al. Clinical nutrition in surgery: Guidelines of the German Society for Nutritional Medicine. Chirurg. 2014;85:320–326. doi: 10.1007/s00104-014-2737-7. [DOI] [PubMed] [Google Scholar]
- 156.Fagiuoli S., Colli A., Bruno R., Craxì A., Gaeta G.B., Grossi P., Mondelli M.U., Puoti M., Sagnelli E., Stefani S., et al. Management of Infections Pre- and Post-Liver Transplantation: Report of an AISF Consensus Conference. J. Hepatol. 2014;60:1075–1089. doi: 10.1016/j.jhep.2013.12.021. [DOI] [PubMed] [Google Scholar]
- 157.Kaido T., Mori A., Ogura Y., Ogawa K., Hata K., Yoshizawa A., Yagi S., Uemoto S. Pre- and Perioperative Factors Affecting Infection after Living Donor Liver Transplantation. Nutrition. 2012;28:1104–1108. doi: 10.1016/j.nut.2012.02.007. [DOI] [PubMed] [Google Scholar]
- 158.Shirabe K., Yoshimatsu M., Motomura T., Takeishi K., Toshima T., Muto J., Matono R., Taketomi A., Uchiyama H., Maehara Y. Beneficial Effects of Supplementation with Branched-Chain Amino Acids on Postoperative Bacteremia in Living Donor Liver Transplant Recipients. Liver Transplant. 2011;17:1073–1080. doi: 10.1002/lt.22324. [DOI] [PubMed] [Google Scholar]
- 159.Grąt M., Wronka K.M., Lewandowski Z., Grąt K., Krasnodębski M., Stypułkowski J., Hołówko W., Masior Ł., Kosińska I., Wasilewicz M., et al. Effects of Continuous Use of Probiotics before Liver Transplantation: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. 2017;36:1530–1539. doi: 10.1016/j.clnu.2017.04.021. [DOI] [PubMed] [Google Scholar]
- 160.Plank L.D., Mathur S., Gane E.J., Peng S.-L., Gillanders L.K., McIlroy K., Chavez C.P., Calder P.C., McCall J.L. Perioperative Immunonutrition in Patients Undergoing Liver Transplantation: A Randomized Double-Blind Trial. Hepatology. 2015;61:639–647. doi: 10.1002/hep.27433. [DOI] [PubMed] [Google Scholar]
- 161.Sawas T., Al Halabi S., Hernaez R., Carey W.D., Cho W.K. Patients Receiving Prebiotics and Probiotics before Liver Transplantation Develop Fewer Infections than Controls: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2015;13:1567–1574.e3; quiz e143–e144. doi: 10.1016/j.cgh.2015.05.027. [DOI] [PubMed] [Google Scholar]
- 162.Germani G., Battistella S., Ulinici D., Zanetto A., Shalaby S., Pellone M., Gambato M., Senzolo M., Russo F.P., Burra P. Drug Induced Liver Injury: From Pathogenesis to Liver Transplantation. Minerva Gastroenterol. 2021;67:50–64. doi: 10.23736/S2724-5985.20.02795-6. [DOI] [PubMed] [Google Scholar]
- 163.Dąbrowska-Bender M., Tatara T. Ocena stanu odżywienia i sposobu odżywiania się pacjentów po przeszczepieniu wątroby. Probl. Hig. Epidemiol. 2011;92:247–253. [Google Scholar]
RESEARCH UPDATE
A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden. Cell Chemical Biology 2024, Nov 20. DOI: 10.1016/j.chembiol.2024.10.013.
Food Records Show Daily Variation in Diet during Pregnancy: Results from the Temporal Research in Eating, Nutrition, and Diet during Pregnancy Study. Journal of Nutrition 2024. https://www.sciencedirect.com/science/article/pii/S0022316624011155.
Sucrase isomaltase dysfunction reduces sucrose intake in mice and humans. Gastroenterology 2024. DOI: 10.1053/j.gastro.2024.10.040.
Assessment of Dietary Intake Using Food Photography and Video Recording in Free-Living Young Adults: A Comparative Study. J Acad Nutr Diet 2021, 121:749-761.e741: https://pmc.ncbi.nlm.nih.gov/articles/PMC7975321.
Sucrase isomaltase dysfunction reduces sucrose intake in mice and humans. Gastroenterology 2024, Nov12. https://doi.org/10.1053/j.gastro.2024.10.040.
De Novo Production of the Bioactive Phenylpropanoid Artepillin C Using Membrane-Bound Prenyltransferase in Komagataella phaffii. ACS Synthetic Biology 2024. https://doi.org/10.1021/acssynbio.4c00472.
Association of phenol exposure during pregnancy and asthma development in children: The Japan Environment and Children’s study. Environmental Pollution 2024, 361:124801. https://www.sciencedirect.com/science/article/pii/S026974912401515X.
The massed-spaced learning effect in non-neural human cells. Nature Communications, 2024; 15 (1) DOI: 10.1038/s41467-024-53922-x.
NREM sleep improves behavioral performance by desynchronizing cortical circuits. Science 2024, Nov 21, 386 (6724): 892 https://www.science.org/doi/10.1126/science.adr3339.
A latent cardiomyocyte regeneration potential in human heart disease. Circulation 2024, Nov 21: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.123.067156.
Myocardial infarction augments sleep to limit cardiac inflammation and damage. Nature 2024, 635:168-177.
Blood Pressure Decreases in Overweight Elderly Individuals on Vitamin D: A Randomized Trial. Journal of the Endocrine Society 2024, Nov 12: https://academic.oup.com/jes/article/8/12/bvae168/7888766.
Kimchi:
Effects of kimchi consumption on body fat and intestinal microbiota in overweight participants: A randomized, double-blind, placebo-controlled, single-center clinical trial. Journal of Functional Foods 2024, 121:106401. https://www.sciencedirect.com/science/article/pii/S1756464624004031.
Kimchi Intake Alleviates Obesity-Induced Neuroinflammation by Modulating the Gut-Brain Axis, Food Res Int 2022: https://www.sciencedirect.com/science/article/abs/pii/S0963996922005919?via%3Dihub.
Effect of Kimchi Intake on Body Weight of General Community Dwellers: a Prospective Cohort Study. Food & Function 2023: https://pubs.rsc.org/en/content/articlelanding/2023/fo/d2fo03900a.
Association between kimchi consumption and obesity by BMI and abdominal obesity in Korean adults a cross-sectional analysis of the Health Examinees study 1. Jung H, Yun Y-R, Hong SW, Shin S: Association between kimchi consumption and obesity based on BMI and abdominal obesity in Korean adults: a cross-sectional analysis of the Health Examinees study. BMJ Open 2024, 14:e076650. https://bmjopen.bmj.com/content/bmjopen/14/2/e076650.full.pdf.
“Eating kimchi every day could help stave off weight gain, new study says”:
Effect of nicotinamide riboside on airway inflammation in COPD: a randomized, placebo-controlled trial. Nature Aging 2024, Nov 15: https://doi.org/10.1038/s43587-024-00758-1.
Preworkout dietary nitrate magnifies training-induced benefits to physical function in late postmenopausal women: a randomized pilot study. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2024, 327:R534-R542. https://journals.physiology.org/doi/abs/10.1152/ajpregu.00150.2024.
Prevalence and Risk Factors of Vitamin D Deficiency in Patients Scheduled to Undergo Revision Arthroplasty of the Hip, Knee and Shoulder-Data from a Single-Centre Analysis. Nutrients 2024, 16(18):3060. https://pubmed.ncbi.nlm.nih.gov/39339662.
November 2024
WELCOME
The Clot Thickens: the enduring mystery of heart disease, by Dr Malcom Kendrick (Columbus Publishing 2021). https://www.amazon.co.uk/Clot-Thickens-enduring-mystery-disease/dp/1907797769.
Carbohydrate Restriction-Induced Elevations in LDL-Cholesterol and Atherosclerosis: The KETO Trial. JACC Adv. 2024 Aug, 3 (8) .
https://doi.org/10.1016/j.jacadv.2024.101109.
“Food guru Tim Spector and health experts call on NHS to make vegan food the norm in hospitals”, by Jane Dalton. The Independent, October 15, 2024: https://www.the-independent.com/news/uk/home-news/hospital-food-tim-spector-health-vegan-plant-b2628101.html.
“In England, more than one in 10 people aged over 65 take at least eight different prescribed medications each week”. Age UK: https://www.ageuk.org.uk/globalassets/age-uk/documents/reports-and-publications/reports-and-briefings/health–wellbeing/medication/190819_more_harm_than_good.pdf.
“Almost 90% of older adults…” https://www.merckmanuals.com/home/older-people’s-health-issues/aging-and-medications/aging-and-medications.
“Most people over 70 should consider taking statins”: https://www.theguardian.com/society/article/2024/sep/10/most-people-over-70-should-consider-taking-statins-study-finds.
“A Swedish study…Effects of medication reviews on use of potentially inappropriate medications in elderly patients; a cross-sectional study in Swedish primary care. BMC Health Services Research 2018, 18:616. https://doi.org/10.1186/s12913-018-3425-y.
Petronella: “The 16-day diet that will help you lose half a stone”, by Boudicca Fox-Leonard: https://www.telegraph.co.uk/health-fitness/diet/weight-loss/human-being-diet.
NEWS
Diet Quality, Dietary Inflammatory Potential, and Risk of Prostate Cancer Grade Reclassification. JAMA Oncology 2024. https://jamanetwork.com/journals/jamaoncology/article-abstract/2824991.
Reconstruction of the human amylase locus reveals ancient duplications seeding modern-day variation. Science 2024, Oct 17: https://www.science.org/doi/abs/10.1126/science.adn0609.
Independent amylase gene copy number bursts correlate with dietary preferences in mammals. eLife 2019, 8:e44628. https://doi.org/10.7554/eLife.44628.
Fish oil supplementation modifies the associations between genetically predicted and observed concentrations of blood lipids: a cross-sectional gene-diet interaction study in UK Biobank. Am J Clin Nutr 2024, Sept, 120: 540-549.: https://www.sciencedirect.com/science/article/pii/S0002916524006051.
Ultra-processed food intake in toddlerhood and mid-childhood in the UK: cross sectional and longitudinal perspectives. European Journal of Nutrition, 2024; DOI: 10.1007/s00394-024-03496-7.
Time-Restricted Eating in Adults With Metabolic Syndrome. Annals of Internal Medicine 2024. https://www.acpjournals.org/doi/abs/10.7326/M24-0859.
Structural basis of thiamine transport and drug recognition by SLC19A3. Nature Communications 2024, Oct 2, 15:8542. https://doi.org/10.1038/s41467-024-52872-8.
IBS/IBD
Global trends in incidence, death, burden and risk factors of early-onset cancer from 1990 to 2019. BMJ Oncology 2023, 2:e000049. https://bmjoncologysite-bmj.vercel.app/content/2/1/e000049.
Differences in cancer rates among adults born between 1920 and 1990 in the USA: an analysis of population-based cancer registry data. Lancet Public Health 2024, 9:e583-e593. https://doi.org/10.1016/S2468-2667(24)00156-7.
A Starch- and Sucrose-Reduced Diet Has Similar Efficiency as Low FODMAP in IBS—A Randomized Non-Inferiority Study. Nutrients 2024, 16:3039. https://www.mdpi.com/2072-6643/16/17/3039.
Food antigens suppress small intestinal tumorigenesis. Frontiers in Immunology 2024; 15 DOI: 10.3389/fimmu.2024.1373766.
Restrictive Strategy vs Usual Care for Cholecystectomy in Patients With Abdominal Pain and Gallstones. JAMA Surgery 2024; DOI: 10.1001/jamasurg.2024.3080.
Micro- and nano-plastics, intestinal inflammation, and inflammatory bowel disease: A review of the literature. Science of The Total Environment 2024, 953:176228. https://www.sciencedirect.com/science/article/pii/S0048969724063848.
Microplastics role in cell migration and distribution during cancer cell division. Chemosphere 2024, 353:141463. https://www.sciencedirect.com/science/article/pii/S0045653524003564.
In Vivo Tissue Distribution of Polystyrene or Mixed Polymer Microspheres and Metabolomic Analysis after Oral Exposure in Mice. Environmental Health Perspectives, 2024; 132 (4) DOI: 10.1289/EHP13435.
Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environ Sci Technol 2022, 56:414-421. https://pubmed.ncbi.nlm.nih.gov/34935363.
Inflammatory Markers at Birth and Risk of Early-Onset Inflammatory Bowel Disease. Gastroenterology 2024: https://doi.org/10.1053/j.gastro.2024.07.007.
Antibiotics damage the colonic mucus barrier in a microbiota-independent manner. Science Advances 2024, 10:eadp4119. https://www.science.org/doi/abs/10.1126/sciadv.adp4119.
Gut Microbiota Profiling as a Promising Tool to Detect Equine Inflammatory Bowel Disease (IBD). Animals 2024, 14:2396. https://www.mdpi.com/2076-2615/14/16/2396.
CBD with Dr Elisabeth Philipps
- “Medical marijuana”, by Peter Grinspoon, MD, Harvard Health Blog, April 10, 2020: https://www.health.harvard.edu/blog/medical-marijuana-2018011513085.
- Cannabidiol Inhibits the Proliferation and Invasiveness of Prostate Cancer Cells. J Nat Prod 2023, 86:2151-2161. https://pubmed.ncbi.nlm.nih.gov/37703852.
- Medicinal use of cannabis based products and cannabinoids. BMJ 2019, 365:l1141. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447998.
- Cannabidiol (CBD) Products for Pain: Ineffective, Expensive, and With Potential Harms. The Journal of Pain 2024, 25:833-842. https://doi.org/10.1016/j.jpain.2023.10.009.
- Eight Weeks of Daily Cannabidiol Supplementation Improves Sleep Quality and Immune Cell Cytotoxicity. Nutrients 2023, 15:4173. https://www.mdpi.com/2072-6643/15/19/4173.
- Daily cannabidiol and L-theanine beverage consumption does not alter anxiety, fatigue, cognitive function, or natural killer cell function: A randomized, controlled trial in healthy, young adults. Brain Behavior and Immunity Integrative 2024, 5:100045. https://www.sciencedirect.com/science/article/pii/S2949834124000011.
- The pharmacological properties of cannabis. Cannabis: Medical Aspects 2016, 9. 481-491. https://medreleafaustralia.com.au/wp-content/uploads/2017/11/2.The-pharmacological-properties-of-cannabis.pdf.
PHOTOBIOMODULATION – Dr Damien Downing
1. Michael J Gonzalez, Jorge R Miranda-Massari, Christine Shaffner, Sayer Ji, Jose Olalde, Andreas L Kalcker, Alejandro Jose, Miguel J Berdiel. Quantum Orthomolecular Medicine: The Bio-Orthophotonic Concept of Healing Energy. OMNS release Vol 19, No 42 http://orthomolecular.org/resources/omns/v19n42.shtml
- Downing D., Daylight Robbery; The importance of sunlight to health. Arrow Books, London 1988
- Maiman, T. H. (1960). Stimulated Optical Radiation in Ruby. Nature, 187(4736), 493-494. doi: 10.1038/187493a0
- Michael R Hamblin. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation[J]. AIMS Biophysics, 2017, 4(3): 337-361. doi: 10.3934/biophy.2017.3.337
- Yoshimura TM, Sabino CP, Ribeiro MS. Photobiomodulation reduces abdominal adipose tissue inflammatory infiltrate of diet-induced obese and hyperglycemic mice. J Biophotonics. 2016 Dec;9(11-12):1255-1262. doi: 10.1002/jbio.201600088.
- Percival SL, Francolini I, Donelli G. Low-level laser therapy as an antimicrobial and antibiofilm technology and its relevance to wound healing. Future Microbiol. 2015;10(2):255-72. doi: 10.2217/fmb.14.109. PMID: 25689537.
- Laakso EL, Ewais T. A Holistic Perspective on How Photobiomodulation May Influence Fatigue, Pain, and Depression in Inflammatory Bowel Disease: Beyond Molecular Mechanisms. Biomedicines. 2023 May 22;11(5):1497. doi: 10.3390/biomedicines11051497. PMID: 37239169; PMCID: PMC10216148.
- Ferraresi C, Hamblin MR, Parizotto NA (2012) Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med 1: 267-286.
- Fitzmaurice BC, Heneghan NR, Rayen ATA, Grenfell RL, Soundy AA. Whole-Body Photobiomodulation Therapy for Fibromyalgia: A Feasibility Trial. Behav Sci (Basel). 2023 Aug 29;13(9):717. doi: 10.3390/bs13090717. PMID: 37753995; PMCID: PMC10525895.
- Fernandes, K. P. S., Souza, N. H. C., Mesquita0Ferrari, R. A., Rocha, L. A., Neves, A., Sousa, K. D. B., Bussadori, S. K., Hamblin, M. R., & Nunes, F. D. (2016). Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: Effect on M1 inflammatory markers. 344-351. doi: 10.1016/j.jphotobiol.2015.10.015.Photobiomodulation
- Robijns, J., Nair, R. G., Lodewijckx, J., Arany, P., Barasch, A., Bjordal, J. M., Bossi, P., Chilles, A., Corby, P. M., Epstein, J. B., Elad, S., Fekrazad, R., Fregnani, E. R., Genot, M. T., Ibarra, A. M. C., Hamblin, M. R., Heiskanen, V., Hu, K., Klastersky, J., … Bensadoun, R. J. (2022). Photobiomodulation therapy in management of cancer therapy-induced side effects: WALT position paper 2022. Frontiers in Oncology, 12(August). doi: 10.3389/fonc.2022.927685
- Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MT, Henry MM, Buchmann EV, Connelly MP, Dovi JV, Liang HL, Henshel DS, Yeager RL, Millsap DS, Lim J, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT. Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg. 2006 Apr;24(2):121-8. doi: 10.1089/pho.2006.24.121. PMID: 16706690.
- Moskvin, S. V., & Khadartsev, A. A. (2020). Methods of effective low-level laser therapy in the treatment of patients with bronchial asthma (literature review). BioMedicine (France), 10(1), 1-20. doi: 10.37796/2211-8039.1000.
- Costa, T. M. R., Carneiro, F. M., Oliveira, K. A. S. de, Souza, M. F. B., Avelino, M. A. G., & Wastowski, I. J. (2021). Rhinophototherapy, an alternative treatment of allergic rhinitis: Systematic review and meta-analysis. Brazilian Journal of Otorhinolaryngology, 87(6), 742-752. doi: 10.1016/j.bjorl.2020.12.016.
- Lutfallah S, Wajid I, Sinnathamby ES, Maitski RJ, Edinoff AN, Shekoohi S, Cornett EM, Urman RD, Kaye AD. Low-Level Laser Therapy for Acute Pain: A Comprehensive Review. Curr Pain Headache Rep. 2023 Oct;27(10):607-613. doi: 10.1007/s11916-023-01149-8. Epub 2023 Aug 14. PMID: 37578732.
- Chiyuki Shiroto, Misako Yodono, Shigeyuki Nakaji, PAIN ATTENUATION WITH DIODE LASER THERAPY: A RETROSPECTIVE STUDY OF THE LONG-TERM LLLT EXPERIENCE IN THE PRIVATE CLINIC ENVIRONMENT, LASER THERAPY, 1998; 10(1): 33-39. doi: 10.5978/islsm.10.33, https://www.jstage.jst.go.jp/article/islsm/10/1/10_1_33/_article/-char/en
- Chaves, M. E. A., Piancastelli, A. C. C., Araujo, A. R., & Pinotti, M. (2014). Effects of low-power light therapy on wound healing: An Bras Dermatol, 89(4), 616-623.
- Robijns, J., Nair, R. G., Lodewijckx, J., Arany, P., Barasch, A., Bjordal, J. M., Bossi, P., Chilles, A., Corby, P. M., Epstein, J. B., Elad, S., Fekrazad, R., Fregnani, E. R., Genot, M. T., Ibarra, A. M. C., Hamblin, M. R., Heiskanen, V., Hu, K., Klastersky, J., … Bensadoun, R. J. (2022). Photobiomodulation therapy in management of cancer therapy-induced side effects: WALT position paper 2022. Frontiers in Oncology, 12(August). doi: 10.3389/fonc.2022.927685
- Becker, A., Klapczynski, A., Kuch, N., Arpino, F., Simon-Keller, K., De La Torre, C., Sticht, C., Van Abeelen, F. A., Oversluizen, G., & Gretz, N. (2016). Gene expression profiling reveals aryl hydrocarbon receptor as a possible target for photobiomodulation when using blue light. Scientific Reports, 6(September), 1-11. doi: 10.1038/srep33847
- Abdel-Magied, N., Elkady, A.A. & Abdel Fattah, S.M. Effect of Low-Level Laser on Some Metals Related to Redox State and Histological Alterations in the Liver and Kidney of Irradiated Rats. Biol Trace Elem Res 194, 410-422 (2020). doi: 10.1007/s12011-019-01779-3
- Carvalho ÉDS, Souza ARDN, Melo DFC, de Farias AS, Macedo BBO, Sartim MA, Caggy MC, Rodrigues BA, Ribeiro GS, Reis HN, Araújo FQ, da Silva IM, Sachett A, Sampaio VS, Balieiro AADS, Zamuner SR, Vissoci JRN, Cabral LN, Monteiro WM, Sachett JAG. Photobiomodulation Therapy to Treat Snakebites Caused by Bothrops atrox: A Randomized Clinical Trial. JAMA Intern Med. 2024 Jan 1;184(1):70-80. doi: 10.1001/jamainternmed.2023.6538. Erratum in: JAMA Intern Med. 2024 Mar 1;184(3):336. PMID: 38048090; PMCID: PMC10696517.
- Lee TL, Ding Z, Chan AS. Can transcranial photobiomodulation improve cognitive function? A systematic review of human studies. Ageing Res Rev. 2023 Jan;83:101786. doi: 10.1016/j.arr.2022.101786. Epub 2022 Nov 9. PMID: 36371017.
- Johnstone DM, Hamilton C, Gordon LC, Moro C, Torres N, Nicklason F, Stone J, Benabid AL, Mitrofanis J. Exploring the Use of Intracranial and Extracranial (Remote) Photobiomodulation Devices in Parkinson’s Disease: A Comparison of Direct and Indirect Systemic Stimulations. J Alzheimers Dis. 2021;83(4):1399-1413. doi: 10.3233/JAD-210052. PMID: 33843683.
- Semyachkina-Glushkovskaya O, Penzel T, Poluektov M, Fedosov I, Tzoy M, Terskov A, Blokhina I, Sidorov V, Kurths J. Phototherapy of Alzheimer’s Disease: Photostimulation of Brain Lymphatics during Sleep: A Systematic Review. Int J Mol Sci. 2023 Jun 30;24(13):10946. doi: 10.3390/ijms241310946. PMID: 37446135; PMCID: PMC10341497.
- Glass GE. Photobiomodulation: The Clinical Applications of Low-Level Light Therapy. Aesthet Surg J. 2021 May 18;41(6):723-738. doi: 10.1093/asj/sjab025. Erratum in: Aesthet Surg J. 2022 Apr 12;42(5):566. PMID: 33471046.
- Ercetin, C., Sahbaz, N. A., Acar, S., Tutal, F., & Erbil, Y. (2020). Impact of Photobiomodulation on T3/T4 Ratio and Quality of Life in Hashimoto Thyroiditis. Photobiomodulation, Photomedicine, and Laser Surgery, 38(7), 409-412. doi: 10.1089/photob.2019.4740
- Hossein-khannazer, N., Arki, M. K., Keramatinia, A., & Rezaei-Tavirani, M. (2021). The Role of Low-Level Laser Therapy in the Treatment of Multiple Sclerosis: A Review Study. Journal of Lasers in Medical Sciences, 12(1), 1-6. doi: 10.34172/JLMS.2021.88
- Ding L, Gu Z, Chen H, Wang P, Song Y, Zhang X, Li M, Chen J, Han H, Cheng J, Tong Z. Phototherapy for age-related brain diseases: Challenges, successes and future. Ageing Res Rev. 2024 Feb;94:102183. doi: 10.1016/j.arr.2024.102183. Epub 2024 Jan 11. PMID: 38218465.
- Scontri CMCB, de Castro Magalhães F, Damiani APM, Hamblin MR, Zamunér AR, Ferraresi C. Dose and time-response effect of photobiomodulation therapy on glycemic control in type 2 diabetic patients combined or not with hypoglycemic medicine: A randomized, crossover, double-blind, sham-controlled trial. J Biophotonics. 2023 Oct;16(10):e202300083. doi: 10.1002/jbio.202300083. Epub 2023 Jun 27. PMID: 37171054; PMCID: PMC10662441.
- Hao W, Dai X, Wei M, Li S, Peng M, Xue Q, Lin H, Wang H, Song P, Wang Y. Efficacy of transcranial photobiomodulation in the treatment for major depressive disorder: A TMS-EEG and pilot study. Photodermatol Photoimmunol Photomed. 2024 Mar;40(2):e12957. doi: 10.1111/phpp.12957. PMID: 38470033.
- Wang SJ, Chen MY. The effects of sunlight exposure therapy on the improvement of depression and quality of life in post-stroke patients: A RCT study. Heliyon. 2020 Jul 14;6(7):e04379. doi: 10.1016/j.heliyon.2020.e04379. PMID: 32695905; PMCID: PMC7364026.
- Wang H, Song P, Hou Y, Liu J, Hao W, Hu S, Dai X, Zhan S, Li N, Peng M, Wang H, Lin H, Wang Y. 820-nm Transcranial near-infrared stimulation on the left DLPFC relieved anxiety: A randomized, double-blind, sham-controlled study. Brain Res Bull. 2023 Aug;200:110682. doi: 10.1016/j.brainresbull.2023.110682. Epub 2023 Jun 8. PMID: 37301483.
- Ohshiro T. Personal Overview of the Application of LLLT in Severely Infertile Japanese Females. Laser Ther. 2012 Jul 3;21(2):97-103. doi: 10.5978/islsm.12-OR-05. PMID: 24610987; PMCID: PMC3944482.
- Eghbaldoost A, Salehi Mashhadsari SP, Ghadirzadeh E, Ghoreifi A, Allameh F. Therapeutic Effects of Low-Level Laser on Male Infertility: A Systematic Review. J Lasers Med Sci. 2023 Sep 25;14:e36. doi: 10.34172/jlms.2023.36. PMID: 38028870; PMCID: PMC10658110.
- Hong GY, Shin BC, Park SN, Gu YH, Kim NG, Park KJ, Kim SY, Shin YI. Randomized controlled trial of the efficacy and safety of self-adhesive low-level light therapy in women with primary dysmenorrhea. Int J Gynaecol Obstet. 2016 Apr;133(1):37-42. doi: 10.1016/j.ijgo.2015.08.004. Epub 2015 Dec 2. PMID: 26797192.
- Tomazoni SS, Machado CDSM, De Marchi T, Casalechi HL, Bjordal JM, de Carvalho PTC, Leal-Junior ECP. Infrared Low-Level Laser Therapy (Photobiomodulation Therapy) before Intense Progressive Running Test of High-Level Soccer Players: Effects on Functional, Muscle Damage, Inflammatory, and Oxidative Stress Markers-A Randomized Controlled Trial. Oxid Med Cell Longev. 2019 Nov 16;2019:6239058. doi: 10.1155/2019/6239058. PMID: 31827687; PMCID: PMC6885272.
- Ali MK, Saha S, Milkova N, Liu L, Sharma K, Huizinga JD, Chen JH. Modulation of the autonomic nervous system by one session of spinal low-level laser therapy in patients with chronic colonic motility dysfunction. Front Neurosci. 2022 Sep 1;16:882602. doi: 10.3389/fnins.2022.882602. PMID: 36117615; PMCID: PMC9477245.
- Gominak, S. C., & Stumpf, W. E. (2012). The world epidemic of sleep disorders is linked to vitamin D deficiency. Medical Hypotheses, 79(2), 132-135. doi: 10.1016/j.mehy.2012.03.031
- https://peterveto.me/blog/– accessed 24-03-2024
- Ott J., My Ivory Cellar. Twentieth Century Press, Chicago 1958
- Ott J., Health and Light. Pocket Books, New York 1973
RESEARCH UPDATE
A core microbiome signature as an indicator of health. Cell 2024, Oct 7. https://doi.org/10.1016/j.cell.2024.09.019.
The sympathetic nervous system drives hyperinflammatory responses to Clostridioides difficile infection. Cell Reports Medicine 2024, Oct 15, 5: 10,101771. https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(24)00510-X.
High sperm deoxyribonucleic acid fragmentation index is associated with an increased risk of preeclampsia following assisted reproduction treatment. Fertility and Sterility 2024, https://doi.org/10.1016/j.fertnstert.2024.08.316.
Degree of Food Processing is Associated with Glycemic Control in African American Adults with Type 2 Diabetes: Findings from the TX STRIDE Clinical Trial. Journal of the Academy of Nutrition and Dietetics 2024, Oct 8:
https://www.jandonline.org/article/S2212-2672(24)00877-3/abstract.
Socio-demographic differences in the dietary inflammatory index from National Health and Nutrition Examination Survey 2005–2018: a comparison of multiple imputation versus complete case analysis. Public Health Nutrition 2024; 27 (1). https://www.cambridge.org/core/journals/public-health-nutrition/article/sociodemographic-differences-in-the-dietary-inflammatory-index-from-national-health-and-nutrition-examination-survey-20052018-a-comparison-of-multiple-imputation-versus-complete-case-analysis/7BEEA51160D7657B267F4C12A9AF1584.
Vitamin B12 protects necrosis of acinar cells in pancreatic tissues with acute pancreatitis. MedComm 2024, 5:e686. https://onlinelibrary.wiley.com/doi/abs/10.1002/mco2.686.
October 2024
NEWS
Neuroprotective effects of ellorarxine in neuronal models of degeneration. Front. Neurosci 2024, 18, Sept 9, Sec. Neurodegeneration: https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1422294/full.
Retinoic acid regulation of homoeostatic synaptic plasticity and its relationship to cognitive disorders. J Mol Endocrinol 2023, Dec 6;72(1):e220177. https://pubmed.ncbi.nlm.nih.gov/37930232.
Is the modulation of retinoid and retinoid-associated signaling a future therapeutic strategy in neurological trauma and neurodegeneration? Journal of Neurochemistry 2008, 104:584-595. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-4159.2007.05071.x.
SNP box
1. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am J Clin Nutr 2010, 91:1468s-1473s. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854912.
2. Vitamin A – discovery, metabolism, receptor signaling and effects on bone mass and fracture susceptibility. Front Endocrinol (Lausanne) 2024, 15:1298851. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070503.
3. Two common single nucleotide polymorphisms in the gene encoding β-carotene 15,15′-monoxygenase alter β-carotene metabolism in female volunteers. The FASEB Journal 2009, 23:1041-1053. https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fj.08-121962.
Nature and nurture in fussy eating from toddlerhood to early adolescence: findings from the Gemini twin cohort. Journal of Child Psychology and Psychiatry, 2024; DOI: 10.1111/jcpp.14053.
GP working time and supply, and patient demand in England in 2015–2022: a retrospective study. British Journal of General Practice 2024, Sept 16: https://bjgp.org/content/bjgp/early/2024/09/12/BJGP.2024.0075.full.pdf.
Nonlinear dynamics of multi-omics profiles during human aging. Nature Aging 2024, Aug 14: https://pubmed.ncbi.nlm.nih.gov/39143318.
Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nature Med 2020 Jan;26(1):83-90. https://pubmed.ncbi.nlm.nih.gov/31932806.
Autism
1. Transmethylation and Oxidative Biomarkers in Children with Autism Spectrum Disorder: A Cross Sectional Study. J Autism Dev Disord 2024, Sep 4. https://link.springer.com/article/10.1007/s10803-024-06542-9.
2. Interrelation between homocysteine metabolism and the development of autism spectrum disorder in children. Front. Mol. Neurosci. 2022, 15:947513. https://pubmed.ncbi.nlm.nih.gov/36046711.
3. Comprehensive Nutritional and Dietary Intervention for Autism Spectrum Disorder-A Randomized, Controlled 12-Month Trial. Nutrients 2018, Mar 17;10(3):369. https://pubmed.ncbi.nlm.nih.gov/29562612.
4. Moderately elevated preconception fasting plasma total homocysteine is a risk factor for psychological problems in childhood. Public Health Nutr 2019, Jun;22(9):1615-1623. https://www.cambridge.org/core/journals/public-health-nutrition/article/moderately-elevated-preconception-fasting-plasma-total-homocysteine-is-a-risk-factor-for-psychological-problems-in-childhood/759842D3FD877B080488B6D3FAC12ACE.
Commonwealth Fund report: https://www.commonwealthfund.org/publications/fund-reports/2024/sep/mirror-mirror-2024.
Independent investigation of the NHS in England: https://www.gov.uk/government/publications/independent-investigation-of-the-nhs-in-england.
MITOCHONDRIA – Jason Hommel
- Basic values given on Wikipedia at https://en.wikipedia.org/wiki/Composition_of_the_human_body and explored further at https://revealingfraud.com/2022/03/health/chapter-35-mineral-composition-of-the-human-body.
2. (Kim et al., 2008; Turski and Thiele 2009).
Source: “Role of Copper on Mitochondrial Function and Metabolism” 2021
https://www.frontiersin.org/articles/10.3389/fmolb.2021.711227/full.
- “The mitochondrion: a central architect of copper homeostasis” 2018
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688007/ - ““Pulling the plug” on cellular copper: The role of mitochondria in copper export” 2008
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021392/ - Filling the mitochondrial copper pool. J Biol Chem 2018, 293: 6, 1897-8.
https://www.jbc.org/article/S0021-9258(20)39838-0/fulltext - The currents of life: The terminal electron-transfer complex of respiration. Proceedings of the National Academy of Sciences 1995, 92: 11949-51, December 1995.
https://www.pnas.org/doi/epdf/10.1073/pnas.92.26.11949. - Iron and Copper in Mitochondrial Diseases. Cell Metab 2013, Mar 5;17(3):319-28.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594794. - Copper Deficiency Decreases Complex IV but Not Complex I, II, III, or V in the Mitochondrial Respiratory Chain in Rat Heart. J Nutrition 2007,
137: 1, 14-18. https://www.sciencedirect.com/science/article/pii/S0022316622090034.
9. Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart 2018, 5(2):e000784. https://pubmed.ncbi.nlm.nih.gov/30364437.
- Copper deficiency-induced anemia is caused by a mitochondrial metabolic reprograming in erythropoietic cells. Metallomics 2019, 11:282-290. http://dx.doi.org/10.1039/C8MT00224J.
11. Metabolic crossroads of iron and copper. Nutr Rev 2010;68(3):133-147. https://pubmed.ncbi.nlm.nih.gov/20384844. - Characterization of the transition-metal-binding properties of hepcidin. Biochem J 2010;427(2):289-296. https://pubmed.ncbi.nlm.nih.gov/20113314.
- Role of copper in mitochondrial iron metabolism. Blood 1976, 48:77-85. https://doi.org/10.1182/blood.V48.1.77.77.
- Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 2008, Jul;60(7):421-9.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864105.
Mitochondrial antioxidants abate SARS-COV-2 pathology in mice. Proceedings of the National Academy of Sciences, 2024; 121 (30) DOI: 10.1073/pnas.2321972121.
Cannabidiol ameliorates mitochondrial disease via PPARγ activation in preclinical models. Nature Communications 2024, 15:7730. https://doi.org/10.1038/s41467-024-51884-8.
Somatic nuclear mitochondrial DNA insertions are prevalent in the human brain and accumulate over time in fibroblasts. PLOS Biology 2024, 22 (8): e3002723 DOI: 10.1371/journal.pbio.3002723.
The multifaceted role of mitochondria in autism spectrum disorder. Molecular Psychiatry 2024. https://doi.org/10.1038/s41380-024-02725-z.
MENOPAUSE
Evidence for a mechanism dependent on protein leverage. BJOG: Int J Obstet Gynaecol 2023;130(1):4-10. https://obgyn.onlinelibrary.wiley.com/doi/10.1111/1471-0528.17290.
Obesity: the protein leverage hypothesis. Obes Rev 2005;6(2):133-142.
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-789X.2005.00178.x.
Protein Knowledge of Older Adults and Identification of Subgroups with Poor Knowledge. Nutrients 2021;13(3):1006. https://www.mdpi.com/2072-6643/13/3/1006.
Genetic links between ovarian ageing, cancer risk and de novo mutation rates. Nature 2024, Sept 11: https://doi.org/10.1038/s41586-024-07931-x.
Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American Journal of Clinical Nutrition 2003, 78:517S-520S. https://doi.org/10.1093/ajcn/78.3.517S.
ECOLOGICAL MEDICINE – Damien Downing
Non-invasive therapy to reduce the body burden of aluminium in Alzheimer’s disease. J Alzheimers Dis. 2006 Sep;10(1):17-24; discussion 29-31. https://pubmed.ncbi.nlm.nih.gov/16988476.
NEURODIVERGENCE – Elaine Wilkins
- https://www.england.nhs.uk/2023/11/one-in-five-children-and-young-people-had-a-probable-mental-disorder-in-2023/
- https://www.governmentevents.co.uk/recognising-neurodiversity-in-the-workforce.
- CIPD 2024: https://www.cipd.org/en/knowledge/reports/neuroinclusion-at-work.
- https://www.nuffieldtrust.org.uk/news-item/the-rapidly-growing-waiting-lists-for-autism-and-adhd-assessments
- https://psychology.org.au/insights/why-are-so-many-neurodivergent-women-misdiagnosed and Finding the True Number of Females with Autistic Spectrum Disorder by Estimating the Biases in Initial Recognition and Clinical Diagnosis. Children (Basel) 2022, 9 (2): https://pubmed.ncbi.nlm.nih.gov/35204992.
|
- “Common Contributors to Neurodivergent Burnout”, by Dr Megan Anna Neff: https://neurodivergentinsights.com/mentalhealthresources/autism-and-burnout-glypb.
RESEARCH
Stress increases sperm respiration and motility in mice and men. Nature Communications 2024, 15 (1), Sept 11. DOI: 10.1038/s41467-024-52319-0.
Habitual Coffee, Tea and Caffeine Consumption, Circulating Metabolites, and the Risk of Cardiometabolic Multimorbidity. JCEM 2024, Sept 17: https://academic.oup.com/jcem/advance-article-abstract/doi/10.1210/clinem/dgae552/7754545.
Urinary Metal Levels and Coronary Artery Calcification. Journal of the American College of Cardiology 2024, Sept 18: https://www.sciencedirect.com/science/article/pii/S0735109724079610?via%3Dihub.
The contemporaneous epidemic of chronic, copper deficiency. J Nutr Sci 2022, Oct 11;11:e89. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554529.
An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022 Feb 7;14(3):700. https://www.mdpi.com/2072-6643/14/3/700.
Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart 2018, 5:e000784: http://openheart.bmj.com/content/5/2/e000784.abstract.
Dietary fibres boost gut microbiota-produced B vitamin pool and alter host immune landscape. Microbiome 2024, Sept 23: https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-024-01898-7.
September 2024
WELCOME
Microplastics and microbiota: Unraveling the hidden environmental challenge. World J Gastroenterol 2024, 30:2191-2194: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056917.
NEWS
Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice. Molecular Metabolism 2024, August: https://www.sciencedirect.com/science/article/pii/S2212877824001352.
Meat consumption and incident type 2 diabetes: a federated meta-analysis of 1·97 million adults with 100,000 incident cases from 31 cohorts in 20 countries. Lancet Diabetes Endocrinol 2024, Aug 20: https://pubmed.ncbi.nlm.nih.gov/39174161.
Integration of epidemiological and blood biomarker analysis links haem iron intake to increased type 2 diabetes risk. Nature Metabolism 2024, August 12: https://doi.org/10.1038/s42255-024-01109-5.
Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404:572-628. https://pubmed.ncbi.nlm.nih.gov/39096926.
Letter references:
Smith AD, et al. Homocysteine and Dementia: An International Consensus Statement. J Alzheimer’s Dis. 2018;62:561-70
Douaud G, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci. 2013;110:9523-8.
van Soest APM, et al. Concurrent nutrient deficiencies are associated with dementia incidence. Alzheimer’s Dement. 2024;20:4594-601.
Pfeiffer CM, et al. Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999–2000. Am J Clin Nutr. 2002;82:442-50.
Tsiachristas A, et al. B-vitamins are potentially a cost-effective population health strategy to tackle dementia: Too good to be true? Alzheimer’s Dement: Translat Res Clin Intervent. 2016;2:156-61.
Blood polyunsaturated omega-3 fatty acids, brain atrophy, cognitive decline, and dementia risk. Alzheimer’s and Dementia 2021, 17:407-416.
Plasma Omega-3 Fatty Acids and Risk for Incident Dementia in the UK Biobank Study: A Closer Look. Nutrients 2023, 15.
Omega-3 Fatty Acids, Cognition, and Brain Volume in Older Adults. Brain Sci 2023, 13.
Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. ArchNeurol 2006, 63:1545-1550.
Omega-3 Fatty Acids and Neurodegenerative Diseases: New Evidence in Clinical Trials. International Journal of Molecular Sciences 2019, 20:4256.
Could Alzheimer’s disease be a maladaptation of an evolutionary survival pathway mediated by intracerebral fructose and uric acid metabolism? Am J Clin Nutr 2023; 117(3): 455-66.
The human brain produces fructose from glucose. JCI Insight 2017; 2(4): e90508.
Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer’s disease: metabolic basis for dementia. Sci Rep 2016; 6: 27524.
Ketohexokinase-dependent metabolism of cerebral endogenous fructose in microglia drives diabetes-associated cognitive dysfunction. Exp Mol Med 2023.
Unbiased metabolome screen links serum urate to risk of Alzheimer’s disease. Neurobiol Aging 2022; 120: 167-76.
The Scavenging Activity of Coenzyme Q(10) Plus a Nutritional Complex on Human Retinal Pigment Epithelial Cells. Int J Mol Sci 2024, 25: https://pubmed.ncbi.nlm.nih.gov/39125641.
HEART HEALTH
Gut microbe-generated phenylacetylglutamine is an endogenous allosteric modulator of β2-adrenergic receptors. Nature Communications 2024, 15:6696. https://doi.org/10.1038/s41467-024-50855-3.
Eicosapentaenoic Acid Rescues Cav1.2-L-Type Ca2+ Channel Decline Caused by Saturated Fatty Acids via Both Free Fatty Acid Receptor 4-Dependent and -Independent Pathways in Cardiomyocytes. International Journal of Molecular Sciences 2024, 25:7570. https://www.mdpi.com/1422-0067/25/14/7570.
Investigating Genetic Overlap between Alzheimer’s Disease, Lipids, and Coronary Artery Disease: A Large-Scale Genome-Wide Cross Trait Analysis. International Journal of Molecular Sciences 2024, 25:8814. https://www.mdpi.com/1422-0067/25/16/8814.
Cardiorespiratory Fitness Benefits of High-Intensity Interval Training After Stroke: A Randomized Controlled Trial. Stroke 2024: https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.124.046564.
Low magnesium in conjunction with high homocysteine increases DNA damage in healthy middle aged Australians. European Journal of Nutrition 2024: https://doi.org/10.1007/s00394-024-03449-0.
Graphic from: Hypomagnesemia as a Risk Factor and Accelerator for Vascular Aging in Diabetes Mellitus and Chronic Kidney Disease. Metabolites 2023, 13: https://pubmed.ncbi.nlm.nih.gov/36837924.
Magnesium Is a Vital Ion in the Body – It Is Time to Consider Its Supplementation on a Routine Basis. Clinics and Practice 2024, 14:521-535. https://www.mdpi.com/2039-7283/14/2/40
Hypomagnesemia as a Risk Factor and Accelerator for Vascular Aging in Diabetes Mellitus and Chronic Kidney Disease. Metabolites 2023, 13: https://pubmed.ncbi.nlm.nih.gov/36837924.
BONES and JOINTS
Specific Collagen Peptides Improve Bone Mineral Density and Bone Markers in Postmenopausal Women-A Randomized Controlled Study. Nutrients 2018, 10: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793325.
Specific Bioactive Collagen Peptides in Osteopenia and Osteoporosis: Long-Term Observation in Postmenopausal Women. J Bone Metab 2021, 28:207-213. https://pubmed.ncbi.nlm.nih.gov/34520654.
Impact of Collagen Peptide Supplementation in Combination with Long-Term Physical Training on Strength, Musculotendinous Remodeling, Functional Recovery, and Body Composition in Healthy Adults: A Systematic Review with Meta-analysis. Sports Medicine 2024. https://doi.org/10.1007/s40279-024-02079-0.
Role of Glucosamine and Hyaluronic acid in thetreatment of Osteoarthritis. International Journal of Advanced Research in Biological Sciences (IJARBS) 2024: https://ijarbs.com/pdfcopy/2024/july2024/ijarbs11.pdf.
Oral administration of hyaluronic acid to improve skin conditions via a randomized double-blind clinical test. Skin Res Technol 2023, 29:e13531. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661223.
Limosilactobacillus reuteri 6475 and Prevention of Early Postmenopausal Bone Loss: A Randomized Clinical Trial. JAMA Netw Open 2024, 7:e2415455. https://pubmed.ncbi.nlm.nih.gov/38865129.
RESEARCH UPDATE
Force-induced dephosphorylation activates the cochaperone BAG3 to coordinate protein homeostasis and membrane traffic. Current Biology, 2024, Aug 16: https://pubmed.ncbi.nlm.nih.gov/39181128.
A lactobacilli-based inhaled live biotherapeutic product attenuates pulmonary neutrophilic inflammation. Nature Communications 2024, Aug 19, 15:7113. https://doi.org/10.1038/s41467-024-51169-0.
Short-term post-fast refeeding enhances intestinal stemness via polyamines. Nature 2024, Aug 21: https://doi.org/10.1038/s41586-024-07840-z.
August 2024
WELCOME
Precision Medicine Approach to Alzheimer’s Disease: Successful Pilot Project. Journal of Alzheimer’s Disease 2022, 88:1411-1421. https://content.iospress.com/articles/journal-of-alzheimers-disease/jad215707.
NEWS
Artemisinins ameliorate polycystic ovarian syndrome by mediating LONP1-CYP11A1 interaction. Science 2024, 384:eadk5382. https://www.science.org/doi/abs/10.1126/science.adk5382.
The interplay between diet and the gut microbiome: implications for health and disease. Nature Reviews Microbiology 2024: https://doi.org/10.1038/s41579-024-01068-4.
Multikingdom and functional gut microbiota markers for autism spectrum disorder. Nature Microbiology 2024: DOI: 10.1038/s41564-024-01739-1.
Ornish: Effects of intensive lifestyle changes on the progression of mild cognitive impairment or early dementia due to Alzheimer’s disease: a randomized, controlled clinical trial. Alzheimer’s Research & Therapy 2024, 16:122. https://doi.org/10.1186/s13195-024-01482-z.
Sandison: Observed Improvement in Cognition During a Personalized Lifestyle Intervention in People with Cognitive Decline. Journal of Alzheimer’s Disease 2023, 94:993-1004.
Bredesen (first paper): Reversal of cognitive decline: a novel therapeutic program. Aging (Albany NY) 2014, 6:707-717. https://pubmed.ncbi.nlm.nih.gov/25324467.
Physician associates: https://www.healthwatch.co.uk/blog/2024-07-22/am-i-seeing-physician-associate-or-doctor.
Malnutrition in Adults. N Engl J Med 2024, July 10; 391:155-165: https://www.nejm.org/doi/10.1056/NEJMra2212159.
CHILDREN’S HEALTH
- https://www.nhs.uk/conditions/baby/weaning-and-feeding/vitamins-for-children/#:~:text=The%20government%20recommends%20all%20children,not%20be%20given%20vitamin%20supplements..
- Food Supplements Consumer Research, 2018 for the Foods Standards Agency: https://www.food.gov.uk/sites/default/files/media/document/food-supplements-consumer-research.pdf.
- Dietary supplements in infants and children. Journal of Pediatric Gastroenterology and Nutrition 2016, 63(2), 177-180. https://doi.org/10.1097/mpg.0000000000001180.
- Dietary supplement use in children and adolescents aged ≤19 years — united states, 2017–2018. MMWR Morbidity and Mortality Weekly Report 2020, 69(43), 1557-1562. https://doi.org/10.15585/mmwr.mm6943a1
- Use of dietary supplements by children and adolescents.
J Pediatr (Rio J)2024; 100 (2 Supplement), 31-39: https://journals.indexcopernicus.com/api/file/viewByFileId/1941198. - The prevalence of dietary supplement use among elementary, junior high, and high school students: a nationwide survey in Japan. Nutrients 2018, 10(9), 1176. https://doi.org/10.3390/nu10091176.
- Dietary supplement use in elementary school children: A Japanese web-based survey.Environ. Health Prev. Med2021, 26, 63: https://pubmed.ncbi.nlm.nih.gov/34090343.
8. Use of health-promoting food and supplements in Swiss children. Children 2022, 9(12), 1842. https://doi.org/10.3390/children9121842. - Critical study of nutritional effects based on supplements among affected pediatric patients with a focus on nutrition and health status. International Journal of Health Sciences 2022, 11688-11696. https://doi.org/10.53730/ijhs.v6ns2.8119.
10. Effectiveness of vitamin a supplementation among children under 5 years old in Kazakhstan. Potravinarstvo Slovak Journal of Food Sciences 2024, 18, 386-397. https://doi.org/10.5219/1946. - “Children in UK getting shorter due to malnutrition in ‘national embarrassment”, by Holly Bancroft. The Independent, June 19, 2004:
Rhamnosus
1. Prophylactic Lactobacillus GG reduces antibiotic-associated diarrhea in children with respiratory infections: a randomized study. Pediatrics 1999;104(5):e64.(PubMed)
2. A randomized placebo-controlled comparison of 2 prebiotic/probiotic combinations in preterm infants: impact on weight gain, intestinal microbiota, and fecal short-chain fatty acids. J Pediatr Gastroenterol Nutr. 2009;48(2):216-25. (PubMed)
3. Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. The Journal of Pediatrics. 1999;135(5):564-8.(PubMed)
4. Lactobacillus GG in the prevention of nosocomial gastrointestinal and respiratory tract infections. Pediatrics. 2010;125(5):e1171-7.(PubMed)
5. A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics. 1991;88(1):90-7.(PubMed)
6. Effect of maternal consumption of lactobacillus GG on transfer and establishment of fecal bifidobacterial microbiota in neonates. J Pediatr Gastroenterol Nutr. 2006;42(2):166-70.(PubMed)
7. Prenatal probiotic administration can influence Bifidobacterium microbiota development in infants at high risk of allergy. J Allergy Clin Immunol. 2009;123(2):499-501.(PubMed)
8. Efficacy of Lactobacillus GG as a Diarrheal Preventive in Travelers. J Travel Med. 1997;4(1):41-3.(PubMed)
9. Probiotics reduce the prevalence of oral candida in the elderly–a randomized controlled trial. J Dent Res. 2007;86(2):125-30.(PubMed)
10. Lactobacillus GG for treatment of acute childhood diarrhoea: an open labelled, randomized controlled trial. Indian J Med Res. 2014;139(3):379-85.(PubMed)
11. Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2014;58(8):1107-15.(PubMed)
12. Lactobacillus GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2010;29(3):312-6.(PubMed)
13. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 2001;35(6):412-20.(PubMed)
14. Effect of LGG yoghurt on Streptococcus mutans and Lactobacillus spp. salivary counts in children. Coll Antropol. 2012;36(1):129-32.(PubMed)
15. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: a randomized double-blind placebo-controlled trial. Eur J Clin Nutr. 2011;65(4):501-7.(PubMed)
Herbal Insights – RUTH WEAVER
- A randomized, double‐blind, placebo‐controlled study on immune improvement effects of ethanolic extract of Echinacea purpurea (L.) Moench in Korean adults.PTR Phytotherapy research 2024: https://doi.org/10.1002/ptr.8224.
- Evaluation of echinacea for the prevention and treatment of the common cold: a meta-analysis.The Lancet Infectious diseases. 2007. doi:https://doi.org/10.1016/S1473-3099(07)70160-3
- Principles and practice of Phytotherapy: Modern Herbal Medicine. Edinburgh Churchill Livingstone, Elsevier. 2003
- Botanical medicine: a European professional perspective. Brookline, Mass: Paradigm Publications 2001
- Medical Herbalism – principles and practices. Inner Traditions Bear And Comp. 2003.
- Cytotoxic activity of polyacetylenes and polyenes isolated from roots of Echinacea pallida. British Journal of Pharmacology 2002. https://pubmed.ncbi.nlm.nih.gov/18193076.
- Liver enzyme-mediated oxidation of Echinacea purpurea alkylamides: production of novel metabolites and changes in immunomodulatory activity. Planta Med 2006, 72:1372-1377. https://pubmed.ncbi.nlm.nih.gov/17054047.
- Alkylamides of Echinacea purpurea stimulate alveolar macrophage function in normal rats. International Immunopharmacology https://pubmed.ncbi.nlm.nih.gov/11811940.
- The Essential Book of Herbal Medicine. Editorial: Penguin; 1993.
- What people see me about. https://www.richardadamsherbalist.co.uk/what-people-see-me-about. 2022.
- Adverse reactions associated with echinacea: the Australian experience. Ann Allergy Asthma Immunol 2002, 88:42-51. https://pubmed.ncbi.nlm.nih.gov/11814277.
- European Medicines Agency Post-authorisation Evaluation of Medicines for Human Use, 2006: https://www.ema.europa.eu/en/documents/herbal-comments/superseded-overview-comments-received-community-herbal-monograph-echinacea-purpurea-l-herba-recens/hmpc/104945/2006-superseded-overview-comments-received-community-herbal-list-entry-echinacea_en.pdf.
- Safety and Dose-Dependent Effects of Echinacea for the Treatment of Acute Cold Episodes in Children: A Multicenter, Randomized, Open-Label Clinical Trial. Children (Basel) 2020: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765151/
- Echinacea purpurea L. in children: safety, tolerability, compliance, and clinical effectiveness in upper respiratory tract infections. Canadian Journal of Physiology and Pharmacology 2007: https://pubmed.ncbi.nlm.nih.gov/18066121.
AUTISM
The recovery of a child with autism spectrum disorder through biomedical interventions. Altern. Ther. Health Med. 2008, 14, 42–44. [Google Scholar] [PubMed]
- Normal neurodevelopmental outcome despite severe and early extensive encephalomalacia: Plasticity, repair or magic? Med. Child Neurol. 2013, 55, 868–869. [PubMed]
- Optimal outcome in individuals with a history of autism. Child Psychol. Psychiatry2013, 54, 195–205. [PubMed]
Autism in England: assessing underdiagnosis in a population-based cohort study of prospectively collected primary care data. The Lancet Regional Health – Europe 2023, 29:100626. https://www.sciencedirect.com/science/article/pii/S2666776223000455.
Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatr 2014, 168:721-728: https://pubmed.ncbi.nlm.nih.gov/24911948.
RESEARCH
A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 2024, July 24. https://doi.org/10.1038/s41586-024-07716-2.
Proteomic predictors of individualized nutrient-specific insulin secretion in health and disease. Cell Metab 2024, 36:1619-1633.e1615. https://pubmed.ncbi.nlm.nih.gov/38959864.
Traffic-related ultrafine particles impair mitochondrial functions in human olfactory mucosa cells – Implications for Alzheimer’s disease. Redox Biology 2024; 75: 103272 DOI: 10.1016/J.REDOX.2024.103272
Ultra-processed food consumption in UK adolescents: distribution, trends, and sociodemographic correlates using the National Diet and Nutrition Survey 2008/09 to 2018/19. Eur J Nutr 2024, July 17: https://pubmed.ncbi.nlm.nih.gov/39014218.
Sleep patterns and risk of chronic disease as measured by long-term monitoring with commercial wearable devices in the All of Us Research Program. Nature Medicine 2024, July 19: https://doi.org/10.1038/s41591-024-03155-8.
Gut microbiota promoting propionic acid production accompanies caloric restriction-induced intentional weight loss in cats. Scientific Reports 2024; 14 (1). DOI: 10.1038/s41598-024-62243-4.
Estimating the economic effect of harm associated with high risk prescribing of oral non-steroidal anti-inflammatory drugs in England: population based cohort and economic modelling study. BMJ 2024, July 24, 386:e077880. https://www.bmj.com/content/bmj/386/bmj-2023-077880.full.pdf.
Topics in Chrononutrition. J Acad Nutr Dietetics 2004, August special issue: https://www.jandonline.org/current#TopicsinChrononutritionSpecialIssueArticles.
July 2024
NEWS
Atherosclerotic Cardiovascular Disease Risk Estimates Using the Predicting Risk of Cardiovascular Disease Events Equations. JAMA Internal Medicine 2024: https://doi.org/10.1001/jamainternmed.2024.1302.
GMC is criticised for investments in Nestlé and McDonald’s.
BMJ 2023, 380: https://www.bmj.com/content/380/bmj.p580.
Excess mortality across countries in the Western World since the COVID-19 pandemic: ‘Our World in Data’ estimates of January 2020 to December 2022. BMJ Public Health 2024, 2:e000282. https://bmjpublichealthsite-bmj.vercel.app/content/2/1/e000282.
Gut microbiome remodeling and metabolomic profile improves in response to protein pacing with intermittent fasting versus continuous caloric restriction. Nature Communications 2024, 15:4155. https://doi.org/10.1038/s41467-024-48355-5.
Seven-day dietary nitrate supplementation clinically significantly improves basal macrovascular function in postmenopausal women: a randomized, placebo-controlled, double-blind, crossover clinical trial. Frontiers in Nutrition 2024, June 10: https://www.frontiersin.org/articles/10.3389/fnut.2024.1359671/full.
Omega-3 fatty acid diglyceride emulsions as a novel injectable acute therapeutic in neonatal hypoxic-ischemic brain injury. Biomedicine & Pharmacotherapy, 2024; 175: 116749. https://www.sciencedirect.com/science/article/pii/S0753332224006334.
Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells. Cell 2024, June 6, 187:3039-3055.e3014. https://pubmed.ncbi.nlm.nih.gov/38848677.
Isthmus progenitor cells contribute to homeostatic cellular turnover and support regeneration following intestinal injury. Cell 2024, June 6, 187:3056-3071.e3017. https://pubmed.ncbi.nlm.nih.gov/38848678.
Adherence to unhealthy diets is associated with altered frontal gamma-aminobutyric acid and glutamate concentrations and grey matter volume: preliminary findings. Nutritional Neuroscience 2024, may 24: https://www.tandfonline.com/doi/full/10.1080/1028415X.2024.2355603.
MOULD and MYCOTOXINS
1. Deficient glutathione in the pathophysiology of mycotoxin-related illness. Toxins (Basel) 2014, 6: 608-623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942754.
- Unconscious amygdalar fear conditioning in a subset of chronic fatigue syndrome patients. Med Hypotheses 2002, 59: 727-735. https://pubmed.ncbi.nlm.nih.gov/12445517.
3. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int J Environ Res Public Health 2017, 14: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486318.
Protective and detoxifying effects conferred by selenium against mycotoxins and livestock viruses: A review. Front Vet Sci 2022, 9:956814. https://pubmed.ncbi.nlm.nih.gov/35982930.
Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biological Trace Element Research 2023, 201:5441-5454. https://doi.org/10.1007/s12011-023-03576-5.
DRY FASTING
Systemic proteome adaptions to 7-day complete caloric restriction in humans. Nature Metabolism 2024: https://www.nature.com/articles/s42255-024-01008-9.
Dawn-to-dusk dry fasting decreases circulating inflammatory cytokines in subjects with increased body mass index. Metabolism Open 2024, 21:100274. https://www.sciencedirect.com/science/article/pii/S2589936824000069.
Dr DERRICK LONSDALE
A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid Based Complement Alternat Med 2006, 3:49-59. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1375232.
Lonsdale D, Marrs C: The potential of lipid soluble thiamine in the treatment of cancer. AIMS Biophysics 2020.
Corona Virus and the General Adaptation Syndrome. Scholarly Journal of Emergency Medicine and Critical Care 2020: https://scholars.direct/Articles/emergency-medicine/sjemcc-4-017.php.
The Role of Thiamin in High Calorie Malnutrition. Austin J Nutri Food Sci. 2015, 3(2): 1061. https://mail.austinpublishinggroup.com/nutrition-food-sciences/fulltext/ajnfs-v3-id1061.php.
Thiamin. Adv Food Nutr Res 2018, 83:1-56. https://pubmed.ncbi.nlm.nih.gov/29477220.
Effect of thiamine tetrahydrofurfuryl disulfide on audiogenic seizures in DBA/2J mice. Developmental pharmacology and therapeutics 1982, 4 1-2:28-36.
Marrs C, Lonsdale D: Hiding in Plain Sight: Modern Thiamine Deficiency. Cells 2021, 10: https://pubmed.ncbi.nlm.nih.gov/34685573.
Thiamine metabolism in disease. CRC critical reviews in clinical laboratory sciences 1975, 5 3:289-313. https://pubmed.ncbi.nlm.nih.gov/1092524.
Thiamine deficiency and sudden deaths. The Lancet 1990, 336: https://pubmed.ncbi.nlm.nih.gov/1975355.
GLUTAHIONE – PATRICK HOLFORD
1. Peng, M., et al. Dietary Total Antioxidant Capacity and Cognitive Function in Older Adults. J Nutr Health Aging (2023).
- Basambombo LL, Carmichael PH, Côté S, Laurin D. Use of Vitamin E and C Supplements for the Prevention of Cognitive Decline. Ann Pharmacother. 2017 Feb;51(2):118-124. doi: 10.1177/1060028016673072. Epub 2016 Oct 5. PMID: 27708183.
3.Yu JT, Xu W, Tan CC, Andrieu S, Suckling J, Evangelou E, Pan A, Zhang C, Jia J, Feng L, Kua EH, Wang YJ, Wang HF, Tan MS, Li JQ, Hou XH, Wan Y, Tan L, Mok V, Tan L, Dong Q, Touchon J, Gauthier S, Aisen PS, Vellas B. Evidence-based prevention of Alzheimer’s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry. 2020 Nov;91(11):1201-1209. doi: 10.1136/jnnp-2019-321913. Epub 2020 Jul 20. PMID: 32690803; PMCID: PMC7569385.
- Yao JK, Leonard S, Reddy R: Altered glutathione redox state in schizophrenia. Dis Markers 2006, 22(1):83–93 ; see also Gawryluk JW, Wang J-F, Andreazza AC, Shao L, Young LT: Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 2011, 14(01):123–130.
5. Torres LL, Quaglio NB, de Souza GT, Garcia RT, Dati LM, Moreira WL, Loureiro AP, de Souza-Talarico JN, Smid J, Porto CS, Bottino CM, Nitrini R, Barros SB, Camarini R, Marcourakis T. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis. 2011;26(1):59-68. doi: 10.3233/JAD-2011-110284. PMID: 21593563 - Park SA, Byeon G, Jhoo JH, Kim HC, Lim MN, Jang JW, Bae JB, Han JW, Kim TH, Kwak KP, Kim BJ, Kim SG, Kim JL, Moon SW, Park JH, Ryu SH, Youn JC, Lee DW, Lee SB, Lee JJ, Lee DY, Kim KW. A Preliminary Study on the Potential Protective Role of the Antioxidative Stress Markers of Cognitive Impairment: Glutathione and Glutathione Reductase. Clin Psychopharmacol Neurosci. 2023 Nov 30;21(4):758-768. doi: 10.9758/cpn.23.1053. Epub 2023 Jul 14. PMID: 37859449; PMCID: PMC10591176.
- Park SA, Byeon G, Jhoo JH, Kim HC, Lim MN, Jang JW, Bae JB, Han JW, Kim TH, Kwak KP, Kim BJ, Kim SG, Kim JL, Moon SW, Park JH, Ryu SH, Youn JC, Lee DW, Lee SB, Lee JJ, Lee DY, Kim KW. A Preliminary Study on the Potential Protective Role of the Antioxidative Stress Markers of Cognitive Impairment: Glutathione and Glutathione Reductase. Clin Psychopharmacol Neurosci. 2023 Nov 30;21(4):758-768. doi: 10.9758/cpn.23.1053. Epub 2023 Jul 14. PMID: 37859449; PMCID: PMC10591176.
- Martínez de Toda I, Miguélez L, Vida C, Carro E, De la Fuente M. Altered Redox State in Whole Blood Cells from Patients with Mild Cognitive Impairment and Alzheimer’s Disease. J Alzheimers Dis. 2019;71(1):153-163. doi: 10.3233/JAD-190198. PMID: 31356205.
- J. Frontiñán-Rubio et al. Molecular and Cellular Neuroscience 92 (2018
- Witschi A, Reddy S, Stofer B, Lauterburg B: The systemic availability of oral glutathione. Eur J Clin Pharmacol 1992, 43(6):667–669.
- Lavoie S, Murray MM, Deppen P, Knyazeva MG, Berk M, Boulat O, Bovet P, Bush AI, Conus P, Copolov D, Fornari E, Meuli R, Solida A, Vianin P, Cuénod M, Buclin T, Do KQ: Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology 2008, 33(9):2187–2199.
- Ohlenschlager G,Treusch G, patent number: 5925620 International Classification A61K 3800 for synergistic action of anthocyanidins and glutathione
- Bradlow RCJ, Berk M, Kalivas PW, Back SE, Kanaan RA. The Potential of N-Acetyl-L-Cysteine (NAC) in the Treatment of Psychiatric Disorders. CNS Drugs. 2022 May;36(5):451-482. doi: 10.1007/s40263-022-00907-3. Epub 2022 Mar 22. Erratum in: CNS Drugs. 2022 Apr 28;: PMID: 35316513; PMCID: PMC9095537.
- Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Judd F, Katz F, Katz P, Ording-Jespersen S, Little J, Conus P, Cuenod M, Do KQ, Busha AI: N- acetyl cysteine as a glutathione precursor for schizophrenia—a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 2008, 64(5):361–368.
Glutathione research extra
Autoregulatory control of mitochondrial glutathione homeostasis. Science 2023: https://www.science.org/doi/10.1126/science.adf4154. ;
GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Old Mice Improves Brain Glutathione Deficiency, Oxidative Stress, Glucose Uptake, Mitochondrial Dysfunction, Genomic Damage, Inflammation and Neurotrophic Factors to Reverse Age-Associated Cognitive Decline: Implications for Improving Brain Health in Aging. Antioxidants 2023, 12:1042. https://www.mdpi.com/2076-3921/12/5/1042.
RESEARCH UPDATE
Adverse muscle composition predicts all-cause mortality in obesity
– A personalized assessment of sarcopenic obesity using magnetic
resonance imaging. https://drive.google.com/file/d/1gkbFXhIKc3yUmCqamnXTi4mh9u-bmi0Z/view.
Ageing amplifies a gut microbiota immunogenic signature linked to heightened inflammation. Ageing Cell 2024; https://onlinelibrary.wiley.com/doi/10.1111/acel.14190.
The nasal microbiota is a potential diagnostic biomarker for sepsis in critical care units. Microbiology Spectrum 2024, June 12: https://journals.asm.org/doi/10.1128/spectrum.03441-23.
Paternal and induced gut microbiota seeding complement mother-to-infant transmission. Cell Host & Microbe 2024, June 12, 32 (6): 1011. https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(24)00176-8.
MIKE ASH on Leaky Gut
- Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM. Gut barrier disruption and chronic disease. Trends Endocrinol Metab. 2022 Apr;33(4):247-265.
- Kinashi Y, Hase K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front Immunol. 2021 Apr 22;12:673708.
- Camilleri M Leaky gut: mechanisms, measurement and clinical implications in humans Gut 2019;68:1516-1526.
- Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. 2023 Jan 7;28(2):619.
- Bischoff S.C., Barbara G., Buurman W., Ockhuizen T., Schulzke J.D., Serino M., Tilg H., Watson A., Wells J.M. Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189.
- Ghosh S., Whitley C.S., Haribabu B., Jala V.R. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol. Hepatol. 2021;11:1463–1482.
- Ma J., Piao X., Mahfuz S., Long S., Wang J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Nutr. 2022;9:159–174.
- Jaquez-Durán G, Arellano-Ortiz AL. Western diet components that increase intestinal permeability with implications on health. Int J Vitam Nutr Res. 2023 Nov 27.
- Carter MM, Olm MR, Merrill BD, Dahan D, Tripathi S, Spencer SP, Yu FB, Jain S, Neff N, Jha AR, Sonnenburg ED, Sonnenburg JL. Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. 2023 Jul 6;186(14):3111-3124.e13
- Han H, You Y, Cha S, Kim T-R, Sohn M, Park J. Multi-Species Probiotic Strain Mixture Enhances Intestinal Barrier Function by Regulating Inflammation and Tight Junctions in Lipopolysaccharides Stimulated Caco-2 Cells. Microorganisms. 2023; 11(3):656.
- Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM. Gut barrier disruption and chronic disease. Trends Endocrinol Metab. 2022 Apr;33(4):247-265.
June 2024
WELCOME
“nearly 3 million…too sick to work”: https://www.theguardian.com/business/2024/mar/23/uk-adults-too-sick-to-work-resolution-foundation-covid.
“Waiting times for elective (non-urgent) treatment: referral to treatment (RTT)”, King’s Fund, May 24: https://www.kingsfund.org.uk/insight-and-analysis/data-and-charts/waiting-times-non-urgent-treatment.
“685 years to clear”: https://www.yahoo.com/news/nhs-waiting-lists-could-685-140033627.html.
NEWS
Ketogenic diet induces p53-dependent cellular senescence in multiple organs. Science Advances 2024, May 17, 10:eado1463: https://www.science.org/doi/abs/10.1126/sciadv.ado1463.
Saladino “including carbs in my diet…” https://www.youtube.com/watch?v=Iz5PymNgnSY.
Saladino and Asprey quit carnivore: https://honehealth.com/edge/health/paul-saladino-quit-carnivore-diet.
“Why Gary Brecka Changed his Mind on Keto, Fasting, and 3 other things”: https://www.youtube.com/watch?v=_qed0D6RDdk.
The Celiac‐Disease Superantigen Oligomerizes and Increases Permeability in an Enterocyte Cell Model. Angewandte Chemie International Edition 2024, 63 (21): https://onlinelibrary.wiley.com/doi/10.1002/anie.202317552.
The landscape of rare genetic variation associated with inflammatory bowel disease and Parkinson’s disease comorbidity. Genome Medicine, 2024, May 14, 16 (1): https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-024-01335-2.
Amyloid β accelerates age-related proteome-wide protein insolubility. GeroScience 2024, May 16: https://doi.org/10.1007/s11357-024-01169-1.
A 5:2 intermittent fasting regimen ameliorates NASH and fibrosis and blunts HCC development via hepatic PPARα and PCK1. Cell Metabolism, 2024, May 7: https://www.sciencedirect.com/science/article/pii/S1550413124001359.
Vitamin D regulates microbiome-dependent cancer immunity. Science 2024, 384: 428-437. https://www.science.org/doi/abs/10.1126/science.adh7954.
Multimodal inhibitory effect of matcha on Porphyromonas gingivalis. Microbiology Spectrum 2024, May 21, 0:e03426-03423. https://journals.asm.org/doi/abs/10.1128/spectrum.03426-23.
A dietary commensal microbe enhances antitumor immunity by activating tumor macrophages to sequester iron. Nature Immunology 2024, 25:790-801. https://doi.org/10.1038/s41590-024-01816-x.
Investigating nutrient biomarkers of healthy brain aging: a multimodal brain imaging study. npj Aging 2024, May 21,10:27. https://doi.org/10.1038/s41514-024-00150-8.
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, May 18, 403:2162-2203. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(24)00933-4/fulltext.
DIABETES – Prof Roy Taylor
- Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia 2008, 51:1781-1789.
- Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011, 54:2506-2514.
3. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care 2016, 39:808-815. https://pubmed.ncbi.nlm.nih.gov/27002059.
4. Normal weight individuals who develop type 2 diabetes: the personal fat threshold. Clin Sci (Lond) 2015, 128:405-410. https://pubmed.ncbi.nlm.nih.gov/25515001.
5. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 2018, 391:541-551. https://pubmed.ncbi.nlm.nih.gov/29221645.
6. Time Course of Normalization of Functional β-Cell Capacity in the Diabetes Remission Clinical Trial After Weight Loss in Type 2 Diabetes. Diabetes Care 2020, 43:813-820. https://doi.org/10.2337/dc19-0371.
7. Population response to information on reversibility of Type 2 diabetes. Diabet Med 2013, 30:e135-138. https://pubmed.ncbi.nlm.nih.gov/23320491. - Aetiology of Type 2 diabetes in people with a ‘normal’ body mass index: testing the personal fat threshold hypothesis. Clinical Science 2023, 137:1333-1346. https://doi.org/10.1042/CS20230586.
References to the academic paper:
1 Federation ID (2021) IDF Diabetes Atlas. Accessed 24 Aug 2023.
2 Targher, G., Corey, K.E., Byrne, C.D. and Roden, M. (2021) The complex link between NAFLD and type 2 diabetes mellitus – mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 18, 599–612, https://doi.org/10.1038/s41575-021-00448-y.
3 NICE (2022) Type 2 diabetes in adults: management. Accessed 12 Dec 2022. 4 Lim, E.L., Hollingsworth, K.G., Aribisala, B.S., Chen, M.J., Mathers, J.C. and Taylor, R. (2011) Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54, 2506–2514, https://doi.org/10.1007/s00125-011-2204-7.
5 Steven, S., Hollingsworth, K.G., Al-Mrabeh, A., Avery, L., Aribisala, B., Caslake, M. et al. (2016) Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care. 39, 808–815, https://doi.org/10.2337/dc15-1942.
6 Taylor, R. and Holman, R. (2015) Normal weight individuals who develop Type 2 diabetes: the personal fat threshold. Clin. Sci. 128, 405–410, https://doi.org/10.1042/CS20140553.
7 Statistics NCfH (2007) NHANES 1999-2000 Data Files: Data, Docs, Codebooks, SAS Code. Accessed 24 Aug 2023.
8 Jones, A.G., McDonald, T.J., Shields, B.M., Hagopian, W. and Hattersley, A.T. (2021) Latent Autoimmune Diabetes of Adults (LADA) Is Likely to Represent a Mixed Population of Autoimmune (Type 1) and Nonautoimmune (Type 2) Diabetes. Diabetes Care 44, 1243–1251, https://doi.org/10.2337/dc20-2834.
9 Riddle, M.C., Cefalu, W.T., Evans, P.H., Gerstein, H.C., Nauck, M.A., Oh, W.K. et al. (2021) Consensus report: definition and interpretation of remission in Type 2 diabetes. Diabetes Care., https://doi.org/10.2337/dci21-0034.
10 (2018) The QRISK®3-2018 risk calculator. Accessed 24 Aug 2023.
11 Foster, E., Lee, C., Imamura, F., Hollidge, S.E., Westgate, K.L., Venables, M.C. et al. (2019) Validity and reliability of an online self-report 24-h dietary recall method (Intake24): a doubly labelled water study and repeated-measures analysis. J. Nutr. Sci. 8, e29, https://doi.org/10.1017/jns.2019.20.
12 Steven, S., Hollingsworth, K.G., Small, P., Woodcock, S., Pucci, A., Aribisala, B.S. et al. (2016) Weight loss decreases excess pancreatic triacylglycerol specifically in type 2 diabetes. Diabetes Care. 39, 158–165, https://doi.org/10.2337/dc15-0750.
13 Sanders, F.W.B., Acharjee, A., Walker, C., Marney, L., Roberts, L.D., Imamura, F. et al. (2018) Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption. Genome Biol. 19, 79, https://doi.org/10.1186/s13059-018-1439-8.
14 Jenkins, B., Ronis, M. and Koulman, A. (2020) LC-MS lipidomics: exploiting a simple high-throughput method for the comprehensive extraction of lipids in a ruminant fat dose-response study. Metabolites 10, 296–324, https://doi.org/10.3390/metabo10070296.
15 Cobelli, C., Dalla Man, C., Toffolo, G., Basu, R., Vella, A. and Rizza, R. (2014) The oral minimal model method. Diabetes 63, 1203–1213, https://doi.org/10.2337/db13-1198.
16 Unit ODT (2019) HOMA2 Calculator. Accessed 24 Aug 2023.
17 Petersen, K.F., Dufour, S., Befroy, D., Lehrke, M., Hendler, R.E. and Shulman, G.I. (2005) Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54, 603–608, https://doi.org/10.2337/diabetes.54.3.603.
18 Seppala-Lindroos, A., Vehkavaara, S., Hakkinen, A.M., Goto, T., Westerbacka, J., Sovijarvi, A. et al. (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J. Clin. Endocrinol. Metab. 87, 3023–3028, https://doi.org/10.1210/jcem.87.7.8638.
19 Tiikkainen, M., Tamminen, M., Hakkinen, A.M., Bergholm, R., Vehkavaara, S., Halavaara, J. et al. (2002) Liver-fat accumulation and insulin resistance in obese women with previous gestational diabetes. Obes. Res. 10, 859–867, https://doi.org/10.1038/oby.2002.118.
20 Ravikumar, B., Gerrard, J., Dalla Man, C., Firbank, M.J., Lane, A., English, P.T. et al. (2008) Pioglitazone decreases fasting and postprandial endogenous glucose production in proportion to decrease in hepatic triglyceride content. Diabetes 57, 2288–2295, https://doi.org/10.2337/db07-1828.
21 Al-Mrabeh, A., Zhyzhneuskaya, S.V., Peters, C., Barnes, A.C., Melhem, S., Jesuthasan, A. et al. (2020) Hepatic lipoprotein export and remission of human Type 2 diabetes after weight loss. Cell Metab. 31, 233e4–249e4, https://doi.org/10.1016/j.cmet.2019.11.018.
22 Taylor, R., Al-Mrabeh, A., Zhyzhneuskaya, S., Peters, C., Barnes, A.C., Aribisala, B.S. et al. (2018) Remission of human Type 2 Diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for beta cell recovery. Cell Metab. 28, 547e3–556e3, https://doi.org/10.1016/j.cmet.2018.07.003.
23 Lean, M.E., Leslie, W.S., Barnes, A.C., Brosnahan, N., Thom, G., McCombie, L. et al. (2018) Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391, 541–551, https://doi.org/10.1016/S0140-6736(17)33102-1.
24 Szczepaniak, L.S., Nurenberg, P., Leonard, D., Browning, J.D., Reingold, J.S., Grundy, S. et al. (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am. J. Physiol. Endocrinol. Metab. 288, E462–E468, https://doi.org/10.1152/ajpendo.00064.2004.
25 Petersen, K.F., Dufour, S., Li, F., Rothman, D.L. and Shulman, G.I. (2022) Ethnic and sex differences in hepatic lipid content and related cardiometabolic parameters in lean individuals. JCI Insight 7, https://doi.org/10.1172/jci.insight.157906.
26 Luukkonen, P.K., Zhou, Y., Sadevirta, S., Leivonen, M., Arola, J., Oresic, M. et al. (2016) Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 64, 1167–1175, https://doi.org/10.1016/j.jhep.2016.01.002.
27 Taylor, R. (2008) Pathogenesis of Type 2 diabetes: Tracing the reverse route from cure to cause. Diabetologia 51, 1781–1789, https://doi.org/10.1007/s00125-008-1116-7.
28 Smith, G.I., Shankaran, M., Yoshino, M., Schweitzer, G.G., Chondronikola, M., Beals, J.W. et al. (2020) Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Invest. 130, 1453–1460, https://doi.org/10.1172/JCI134165.
29 Morgan, N.G., Dhayal, S., Diakogiannaki, E. and Welters, H.J. (2008) The cytoprotective actions of long-chain mono-unsaturated fatty acids in pancreatic beta-cells. Biochem. Soc. Trans. 36, 905–908, https://doi.org/10.1042/BST0360905.
30 Zhyzhneuskaya, S.V., Al-Mrabeh, A., Peters, C., Barnes, A., Aribisala, B., Hollingsworth, K.G. et al. (2020) Time course of normalization of functional beta-cell capacity in the diabetes remission clinical trial after weight loss in Type 2 diabetes. Diabetes Care 43, 813–820, https://doi.org/10.2337/dc19-0371.
31 Turner, R.C., Holman, R.R., Matthews, D., Hockaday, T.D. and Peto, J. (1979) Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism 28, 1086–1096, https://doi.org/10.1016/0026-0495(79)90146-X.
32. Lee, Y., Hirose, H., Ohneda, M., Johnson, J.H., McGarry, J.D. and Unger, R.H. (1994) Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc. Natl. Acad. Sci. U.S.A. 91, 10878–10882, https://doi.org/10.1073/pnas.91.23.10878.
33 Cnop, M., Abdulkarim, B., Bottu, G., Cunha, D.A., Igoillo-Esteve, M., Masini, M. et al. (2014) RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 63, 1978–1993, https://doi.org/10.2337/db13-1383.
34 Flannery, C., Dufour, S., Rabol, R., Shulman, G.I. and Petersen, K.F. (2012) Skeletal muscle insulin resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. Diabetes 61, 2711–2717, https://doi.org/10.2337/db12-0206.
35 McGarry, J.D. (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51, 7–18, https://doi.org/10.2337/diabetes.51.1.7.
36 Unger, R.H. (1995) Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44, 863–870, https://doi.org/10.2337/diab.44.8.863.
37 Pinnick, K., Neville, M., Clark, A. and Fielding, B. (2010) Reversibility of metabolic and morphological changes associated with chronic exposure of pancreatic islet beta-cells to fatty acids. J. Cell. Biochem. 109, 683–692.
38 Pinnick, K.E., Collins, S.C., Londos, C., Gauguier, D., Clark, A. and Fielding, B.A. (2008) Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity 16, 522–530, https://doi.org/10.1038/oby.2007.110.
39 Laybutt, D.R., Preston, A.M., Akerfeldt, M.C., Kench, J.G., Busch, A.K., Biankin, A.V. et al. (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50, 752–763, https://doi.org/10.1007/s00125-006-0590-z.
40 Steven, S., Hollingsworth, K.G., Small, P.K., Woodcock, S.A., Pucci, A., Aribasala, B. et al. (2016) Calorie restriction and not glucagon-like peptide-1 explains the acute improvement in glucose control after gastric bypass in Type 2 diabetes. Diabetic Med.: J. Br. Diabetic Assoc. 33, 1723–1731, https://doi.org/10.1111/dme.13257.
41 Poitout, V., Amyot, J., Semache, M., Zarrouki, B., Hagman, D. and Fontes, G. (2010) Glucolipotoxicity of the pancreatic beta cell. Biochim. Biophys. Acta (BBA) – Mol. Cell Biol. Lipids 1801, 289–298, https://doi.org/10.1016/j.bbalip.2009.08.006.
42 Brereton, M.F., Iberl, M., Shimomura, K., Zhang, Q., Adriaenssens, A.E., Proks, P. et al. (2014) Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat. Commun. 5, 4639–4640, https://doi.org/10.1038/ncomms5639.
43 Talchai, C., Xuan, S., Lin, H.V., Sussel, L. and Accili, D. (2012) Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150, 1223–1234, https://doi.org/10.1016/j.cell.2012.07.029.
44 White, M.G., Marshall, H.L., Rigby, R., Huang, G.C., Amer, A., Booth, T. et al. (2013) Expression of mesenchymal and alpha-cell phenotypic markers in islet beta-cells in recently diagnosed diabetes. Diabetes Care 36, 3818–3820, https://doi.org/10.2337/dc13-0705.
45 Son, J., Du, W., Esposito, M., Shariati, K., Ding, H., Kang, Y. et al. (2023) Genetic and pharmacologic inhibition of ALDH1A3 as a treatment of beta-cell failure. Nat. Commun. 14, 558, https://doi.org/10.1038/s41467-023-36315-4.
46 Wang, B., York Nathaniel, W., Nichols Colin, G. and Remedi Maria, S. (2014) Pancreatic β Cell Dedifferentiation in Diabetes and Redifferentiation following Insulin Therapy. Cell Metab. 19, 872–882, https://doi.org/10.1016/j.cmet.2014.03.010.
47 White, M.G., Marshall, H.L., Rigby, R., Huang, G.C., Amer, A., Booth, T. et al. (2013) Expression of mesenchymal and α-cell phenotypic markers in islet β-cells in recently diagnosed diabetes. Diabetes Care. 36, 3818–3820, https://doi.org/10.2337/dc13-0705.
48 Cinti, F., Bouchi, R., Kim-Muller, J.Y., Ohmura, Y., Sandoval, P.R., Masini, M. et al. (2016) Evidence of beta-cell dedifferentiation in human Type 2 diabetes. J. Clin. Endocrinol. Metab. 101, 1044–1054, https://doi.org/10.1210/jc.2015-2860.
49 Panunzi, S., Carlsson, L., De Gaetano, A., Peltonen, M., Rice, T., Sjostrom, L. et al. (2016) Determinants of diabetes remission and glycemic control after bariatric surgery. Diabetes Care. 39, 166–174, https://doi.org/10.2337/dc15-0575.
50 Lotta, L.A., Gulati, P., Day, F.R., Payne, F., Ongen, H., van de Bunt, M. et al. (2016) Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat. Genet. 49, 17–26, https://doi.org/10.1038/ng.3714.
51 Rosenbaum, S., Skinner, R.K., Knight, I.B. and Garrow, J.S. (1985) A survey of heights and weights of adults in Great Britain, 1980. Ann. Hum. Biol. 12, 115–127, https://doi.org/10.1080/03014468500007621.
52 Jarrett, R.J., Keen, H., Fuller, J.H. and McCartney, M. (1979) Worsening to diabetes in men with impaired glucose tolerance (“borderline diabetes”). Diabetologia 16, 25–30, https://doi.org/10.1007/BF00423146.
53 England N (2019) Health Survey for England 2019 Overweight and obesity in adults and children. Available from: https://files.digital.nhs.uk/9D/4195D5/HSE19-Overweight-obesity-rep.pdf. 54 Zheng, Y., Ley, S.H. and Hu, F.B. (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14, 88–98, https://doi.org/10.1038/nrendo.2017.151.
55 Vaag, A. and Lund, S.S. (2007) Non-obese patients with type 2 diabetes and prediabetic subjects: distinct phenotypes requiring special diabetes treatment and (or) prevention? Appl. Physiol. Nutr. Metab. 32, 912–920, https://doi.org/10.1139/H07-100.
56 Hollenbeck, C.B., Chen, Y.-D.I. and Reaven, G.M. (1984) A comparison of the relative effects of obesity and non-insulin dependent diabetes mellitus on in vivo insulin stimulated glucose utilization. Diabetes 33, 622–626, https://doi.org/10.2337/diab.33.7.622.
57 Reaven, G.M., Chen, Y.D., Hollenbeck, C.B., Sheu, W.H., Ostrega, D. and Polonsky, K.S. (1993) Plasma insulin, C-peptide, and proinsulin concentrations in obese and nonobese individuals with varying degrees of glucose tolerance. J. Clin. Endocrinol. Metab. 76, 44–48.
58 Taheri, S., Zaghloul, H., Chagoury, O., Elhadad, S., Ahmed, S.H., El Khatib, N. et al. (2020) Effect of intensive lifestyle intervention on bodyweight and glycaemia in early type 2 diabetes (DIADEM-I): an open-label, parallel-group, randomised controlled trial. Lancet Diab. Endocrinol. 8, 477–489, https://doi.org/10.1016/S2213-8587(20)30117-0.
59 Bynoe, K., Unwin, N., Taylor, C., Murphy, M.M., Bartholomew, L., Greenidge, A. et al. (2019) Inducing remission of Type 2 diabetes in the Caribbean: findings from a mixed methods feasibility study of a low-calorie liquid diet-based intervention in Barbados. Diabetic Med.: J. Br. Diabetic Assoc. 37, 1816–1824.
60 Sarathi, V., Kolly, A., Chaithanya, H.B. and Dwarakanath, C.S. (2017) High rates of diabetes reversal in newly diagnosed Asian Indian young adults with type 2 diabetes mellitus with intensive lifestyle therapy. J. Nat. Sci. Biol. Med. 8, 60–63, https://doi.org/10.4103/0976-9668.198343.
61 Umphonsathien, M., Prutanopajai, P., Aiam, O.R.J., Thararoop, T., Karin, A., Kanjanapha, C. et al. (2019) Immediate and long-term effects of a very-low-calorie diet on diabetes remission and glycemic control in obese Thai patients with type 2 diabetes mellitus. Food Sci. Nutr. 7, 1113–1122, https://doi.org/10.1002/fsn3.956.
62 Rehackova, L., V, A.-S., Adamson, A.J., Stevens, S., Taylor, R. and Sniehotta, F.F. (2017) Acceptability of a very low energy diet in Type 2 diabetes: patient experiences and behaviour regulation. Diabet. Med. 34, 1554–1567, https://doi.org/10.1111/dme.13426.
63 NHSEngland (2020) Low calorie diets to treat type 2 diabetes. Accessed 24 Aug 2023.
HERBAL INSIGHTS – Ruth Weaver
- Mechanistic insight into anti-inflammatory potential of hibiscus rosa-sinensis flower extract as a herbal remedy: A mini review. J Herb Med 2024, 100884. https://www.sciencedirect.com/science/article/abs/pii/S2210803324000411.
- Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus 2023, 15(4). https://doi.org/10.7759/cureus.37080.
- The Yoga of Herbs : An Ayurvedic Guide to Herbal Medicine. Motilal Banarsidass; 2016.
- Chapter 7 – Role of nutraceuticals in respiratory and allied diseases. Nutraceuticals (Second Edition), Efficacy, Safety and Toxicity
2021, Pages 101-115. https://www.sciencedirect.com/science/article/abs/pii/B9780128210383000070.
- Therapeutic Potential Of Hibiscus Rosa Sinensis: A Review. International Journal of Nutrition and Dietetics, 2017:
- Hibiscus (Hibiscus rosa-sinensis), National Library Board of Singapore:. https://www.nlb.gov.sg/main/article-detail?cmsuuid=58f5f860-ace3-4819-82c5-be7d2477855f#:~:text=Hibiscus%20leaves%20are%20ovate%2C%20simple
- Evaluation of hyperglycemic and hyperlipidemic mitigating impact of Hibiscus rosa sinensis (gudhal) flower in type ii diabetes mellitus subjects. International Journal of Applied Biology and Pharmaceutical Technology 2016;7(2):223–228.
- An update review on Hibiscus rosa sinensis phytochemistry and medicinal uses. Journal of Ayurvedic and Herbal Medicine 2018;4(3):135-146. https://www.ayurvedjournal.com/JAHM_201843_08.pdf.
RESEARCH UPDATE
Effect of the Nutraceutical Micodigest 2.0 on the Complication Rate of Colorectal Cancer Surgery With Curative Intent: Protocol for a Placebo-Controlled Double-blind Randomized Clinical Trial. JMIR Res Protoc 2022, 11:e34292: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152712.
Inaoside A: New antioxidant phenolic compound from the edible mushroom Laetiporus cremeiporus. Heliyon 2024, 10 (3): e24651. DOI: 10.1016/j.heliyon.2024.e24651.
Efficacy of psilocybin for treating symptoms of depression: systematic review and meta-analysis. BMJ 2024, 385, May 1: https://www.bmj.com/content/385/bmj-2023-078084.
TREM2 deficiency reprograms intestinal macrophages and microbiota to enhance anti–PD-1 tumor immunotherapy. Science Immunology 2024, May 17, 9:eadi5374: https://www.science.org/doi/abs/10.1126/sciimmunol.adi5374.
Natural toxins in foods – link to the Consumer Monitor:
https://www.bfr.bund.de/cm/364/bfr-consumer-monitor-2024-special-naturally-occurring-plant-based-toxins.pdf.
Microplastic presence in dog and human testis and its potential association with sperm count and weights of testis and epididymis. Toxicological Sciences 2024, May 15: https://academic.oup.com/toxsci/advance-article-abstract/doi/10.1093/toxsci/kfae060/7673133.
Nature and human well-being: The olfactory pathway.Science Advances 2024, May 15, 10 (20): https://www.science.org/doi/abs/10.1126/sciadv.adn3028.
An Adaptive Behavioral Intervention for Weight Loss Management: A Randomized Clinical Trial. JAMA 2024, May 14: https://doi.org/10.1001/jama.2024.0821.
Enteric and systemic postprandial lactate shuttle phases and dietary carbohydrate carbon flow in humans. Nature Metabolism, 2024; 6 (4): 670 DOI: 10.1038/s42255-024-00993-1
Sodium-Permeable Ion Channels TRPM4 and TRPM5 are Functional in Human Gastric Parietal Cells in Culture and Modulate the Cellular Response to Bitter-Tasting Food Constituents. Journal of Agricultural and Food Chemistry 2024, 72:4906-4917: https://doi.org/10.1021/acs.jafc.3c09085.
May 2024
WELCOME
“Long-term sickness surges to record high as labour crisis deepens”, by Tim Wallace, The Telegraph, April 16, 2024: https://www.telegraph.co.uk/business/2024/04/16/long-term-sickness-surges-record-high-labour-crisis-deepens.
Follow Dr Karol Sikora: https://twitter.com/ProfKarolSikora, @ProfKarolSikora.
NEWS
In Vivo Tissue Distribution of Polystyrene or Mixed Polymer Microspheres and Metabolomic Analysis after Oral Exposure in Mice. Environmental Health Perspectives 2024, 132 (4): https://ehp.niehs.nih.gov/doi/10.1289/EHP13435.
Micro- and Nanoplastics Breach the Blood–Brain Barrier (BBB): Biomolecular Corona’s Role Revealed. Nanomaterials 2023, 13:1404. https://www.mdpi.com/2079-4991/13/8/1404.
Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease. Nature Immunology 2024, 25:607-621. https://doi.org/10.1038/s41590-024-01778-0.
Western diet consumption impairs memory function via dysregulated hippocampus acetylcholine signaling. Brain, Behavior, and Immunity 2024, 118:408-422. https://www.sciencedirect.com/science/article/pii/S0889159124002952.
Ketogenic Diet Intervention on Metabolic and Psychiatric Health in Bipolar and Schizophrenia: A Pilot Trial. Psychiatry Research 2024, 335:115866. https://www.sciencedirect.com/science/article/pii/S0165178124001513.
NEWS EXTRA page 10
Redox modulation of Meniere Disease by Coriolus Versicolor treatment, a nutritional mushroom approach with neuroprotective potential. Current Neuropharmacology 2024;22:000-000: https://dx.doi.org/10.2174/1570159X22666231206153936.
HERBAL INSIGHTS – Ruth Weaver
1. The Effect of Citrus aurantium L. Flower Extract on the Severity of Primary Dysmenorrhea: A Double-Blind, Randomized, Controlled Clinical Trial. Journal of Herbal Medicine 2024, Apr 4:100878. https://www.sciencedirect.com/science/article/pii/S2210803324000356.
- Kenner D, Yves Requena. Botanical Medicine: A European Professional Perspective. Paradigm Publications, 2001.
- Stableford A. The Handbook of Constitutional and Energetic Herbal Medicine: the Lotus Within. Aeon Books, 2021.
- The Essential Book of Herbal Medicine, by Simon Mills. Penguin, 1993.
- Effects of Citrus Aurantium (Bitter Orange) on the Severity of First-Stage Labor Pain. Iranian Journal of Pharmaceutical Research 2014, 13 (3): 1011-1018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177623.
ALZHEIMER’s and MERNTAL HEALTH – Prof Peter Gøtzsche
Our prescription drugs kill us in large numbers. Pol Arch Med Wewn 2014, 124:628-634. https://pubmed.ncbi.nlm.nih.gov/25355584.
1 Gøtzsche PC. Deadly Medicines and Organised Crime: How Big Pharma Has Corrupted Health Care. London: Radcliffe Publishing; 2013.
2 Gøtzsche PC. Deadly Psychiatry and Organised Denial. Copenhagen: People’s Press; 2015.
3 Schroeder MO. Death by Prescription: By one estimate, taking prescribed medications is the fourth leading cause of death among Americans. US News 2016; Sept 27.
4 Light DW, Lexchin J, Darrow JJ. Institutional corruption of pharmaceuticals and the myth of safe and effective drugs. J Law Med Ethics 2013;41:590-600.
5 Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998;279:1200–5.
6 FAERS Reporting by Patient Outcomes by Year. FDA 2015;Nov 10.
7 Gøtzsche PC. Mental Health Survival Kit and Withdrawal From Psychiatric Drugs. Ann Arbor: L H Press; 2022.
8 Hubbard R, Farrington P, Smith C, et al. Exposure to tricyclic and selective serotonin reuptake inhibitor antidepressants and the risk of hip fracture. Am J Epidemiol 2003;158:77-84.
9 Thapa PB, Gideon P, Cost TW, et al. Antidepressants and the risk of falls among nursing home residents. N Engl J Med 1998;339:875-82.
10 Ebbesen J, Buajordet I, Erikssen J, et al. Drug-related deaths in a department of internal medicine. Arch Intern Med 2001;161:2317–23.
11 James JTA. A new, evidence-based estimate of patient harms associated with hospital care. J Patient Saf 2013;9:122-8.
12 Ho JY. Life Course Patterns of Prescription Drug Use in the United States. Demography 2023;60:1549-79.
13 Gøtzsche PC. Long-term use of antipsychotics and antidepressants is not evidence-based. Int J Risk Saf Med 2020;31:37-42.
14 Gøtzsche PC. Long-Term Use of Benzodiazepines, Stimulants and Lithium is Not Evidence-Based. Clin Neuropsychiatry 2020;17:281-3.
15 Forbruget af antipsykotika blandt 18-64 årige patienter, med skizofreni, mani eller bipolar affektiv sindslidelse. København: Sundhedsstyrelsen; 2006.
16 Hughes S, Cohen D, Jaggi R. Differences in reporting serious adverse events in industry sponsored clinical trial registries and journal articles on antidepressant and antipsychotic drugs: a cross-sectional study. BMJ Open 2014;4:e005535.
17 Schneider LS, Dagerman KS, Insel P. Risk of death with atypical antipsychotic drug treatment for dementia: meta-analysis of randomized placebo-controlled trials. JAMA 2005;294:1934–43.
18 FDA package insert for Risperdal (risperidone). Accessed 30 May 2022.
19 Koponen M, Taipale H, Lavikainen P, et al. Risk of Mortality Associated with Antipsychotic Monotherapy and Polypharmacy Among Community-Dwelling Persons with Alzheimer’s Disease. J Alzheimers Dis 2017;56:107-18.
20 Whitaker R. Lure of Riches Fuels Testing. Boston Globe 1998; Nov 17.
21 Whitaker R. Mad in America: Bad science, Bad medicine, and the Enduring Mistreatment of the Mentally Ill. Cambridge: Perseus Books Group; 2002:page 269.
22 Vanderburg DG, Batzar E, Fogel I, et al. A pooled analysis of suicidality in double-blind, placebo-controlled studies of sertraline in adults. J Clin Psychiatry 2009;70:674-83.
23 Hengartner MP, Plöderl M. Newer-Generation Antidepressants and Suicide Risk in Randomized Controlled Trials: a Re-Analysis of the FDA Database. Psychother Psychosom 2019;88:247-8.
24 Hengartner MP, Plöderl M. Reply to the Letter to the Editor: “Newer-Generation Antidepressants and Suicide Risk: Thoughts on Hengartner and Plöderl’s ReAnalysis.” Psychother Psychosom 2019;88:373-4.
25 Weich S, Pearce HL, Croft P, et al. Effect of anxiolytic and hypnotic drug prescriptions on mortality hazards: retrospective cohort study. BMJ 2014;348:g1996.
26 Kripke DF, Langer RD, Kline LE. Hypnotics’ association with mortality or cancer: a matched cohort study. BMJ Open 2012;2:e000850.
27 Coupland C, Dhiman P, Morriss R, et al. Antidepressant use and risk of adverse outcomes in older people: population based cohort study. BMJ 2011;343:d4551.
28 Smoller JW, Allison M, Cochrane BB, et al. Antidepressant use and risk of incident cardiovascular morbidity and mortality among postmenopausal women in the Women’s Health Initiative study. Arch Intern Med 2009;169:2128-39.
29 O’Neill A. Age distribution in the United States from 2012 to 2022. Statista 2024;Jan 25.
30 Olfson M, King M, Schoenbaum M. Antipsychotic Treatment of Adults in the United States. Psychiatrist.com 2015;Oct 21.
31 Maust DT, Lin LA, Blow FC. Benzodiazepine Use and Misuse Among Adults in the United States. Psychiatr Serv 2019;70:97-106.
32 Brody DJ, Gu Q. Antidepressant Use Among Adults: United States, 2015-2018. CDC 2020; Sept.
33 Centers for Disease Control and Prevention. Leading Causes of Death. 2024; Jan 17.
34 Drug Overdose Deaths. Centers for Disease Control and Prevention 2023; Aug 22.
35 Davis JS, Lee HY, Kim J, et al. Use of non-steroidal anti-inflammatory drugs in US adults: changes over time and by demographic. Open Heart 2017;4:e000550.
36 Conaghan PG. A turbulent decade for NSAIDs: update on current concepts of classification, epidemiology, comparative efficacy, and toxicity. Rheumatol Int 2012;32:1491-502.
37 Bally M, Dendukuri N, Rich B, et al. Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data. BMJ 2017;357:j1909.
38 Bresalier RS, Sandler RS, Quan H, et al. Cardiovascular Events Associated with Rofecoxib in a Colorectal Adenoma Chemoprevention Trial. N Engl J Med 2005;352:1092-102.
39 Blower AL, Brooks A, Fenn GC, et al. Emergency admissions for upper gastrointestinal disease and their relation to NSAID use. Aliment Pharmacol Ther 1997;11:283–91.
40 Davis C, Lexchin J, Jefferson T, Gøtzsche P, McKee M. “Adaptive pathways” to drug authorisation: adapting to industry? BMJ 2016;354:i4437.
41 van der Hooft CS, Sturkenboom MC, van Grootheest K, et al. Adverse drug reaction-related hospitalisations: a nationwide study in The Netherlands. Drug Saf 2006;29:161-8.
42 Gøtzsche PC. Big marketing hoax: Non-steroidal, anti-inflammatory drugs (NSAIDs) are not anti-inflammatory. Copenhagen: Institute for Scientific Freedom 2022;Nov 10.
43 Perlis R. The time has come for over-the-counter antidepressants. Stat News 2024;April 8.
44 Gøtzsche PC. Critical Psychiatry Textbook. Copenhagen: Institute for Scientific Freedom; 2022. Freely available.
Vitamin D supplementation and incident dementia: Effects of sex, APOE, and baseline cognitive status. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 2023, 15:e12404. https://alz-journals.onlinelibrary.wiley.com/doi/abs/10.1002/dad2.12404.
Associations Between Age at Menopause, Vascular Risk, and 3-Year Cognitive Change in the Canadian Longitudinal Study on Aging. Neurology 2024, 102:e209298. https://pubmed.ncbi.nlm.nih.gov/38569140.
Systematic characterization of multi-omics landscape between gut microbial metabolites and GPCRome in Alzheimer’s disease. Cell Reports 2024, 43: 5, May 28: https://www.sciencedirect.com/science/article/pii/S221112472400456X#undfig1.
Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain 2023, 146:4916-4934. https://doi.org/10.1093/brain/awad303.
VITAMIN D AND RA – Aletta Sorensen
- Rheumatoid arthritis [Internet]. [cited 2024 Feb 11]. Available from: https://www.who.int/news-room/fact-sheets/detail/rheumatoid-arthritis
- Langarizadeh MA, Tavakoli MR, Abiri A, Ghasempour A, Rezaei M, Ameri A. A review on function and side effects of systemic corticosteroids used in high-grade COVID-19 to prevent cytokine storms. EXCLI J [Internet]. 2021 [cited 2024 Apr 21];20:339. Available from: /pmc/articles/PMC7975631/
- Rheumatoid Arthritis (RA) – Bone, Joint, and Muscle Disorders – MSD Manual Consumer Version [Internet]. [cited 2024 Apr 21]. Available from: https://www.msdmanuals.com/home/bone,-joint,-and-muscle-disorders/joint-disorders/rheumatoid-arthritis-ra
- Costello R, David T, Jani M. Impact of Adverse Events Associated With Medications in the Treatment and Prevention of Rheumatoid Arthritis. Clin Ther [Internet]. 2019 Jul 1 [cited 2024 Feb 11];41(7):1376–96. Available from: https://pubmed.ncbi.nlm.nih.gov/31196653/
- Song GG, Bae SC, Lee YH. Association between vitamin D intake and the risk of rheumatoid arthritis: a meta-analysis. Clin Rheumatol [Internet]. 2012 Dec [cited 2024 Feb 11];31(12):1733–9. Available from: https://pubmed.ncbi.nlm.nih.gov/22941259/
- Ratnani I, Fatima S, Abid MM, Surani Z, Surani S. Evidence-Based Medicine: History, Review, Criticisms, and Pitfalls. Cureus [Internet]. 2023 Feb 21 [cited 2024 Feb 13];15(2). Available from: https://pubmed.ncbi.nlm.nih.gov/36968905/
- Franco AS, Freitas TQ, Bernardo WM, Pereira RMR. Vitamin D supplementation and disease activity in patients with immune-mediated rheumatic diseases: A systematic review and meta-analysis. Medicine (Baltimore) [Internet]. 2017 Jun 1 [cited 2024 Jan 25];96(23). Available from: https://pubmed.ncbi.nlm.nih.gov/28591033/
- Zeilstra D, Younes JA, Brummer RJ, Kleerebezem M. Perspective: Fundamental Limitations of the Randomized Controlled Trial Method in Nutritional Research: The Example of Probiotics. Adv Nutr [Internet]. 2018 Sep 1 [cited 2024 Feb 13];9(5):561–71. Available from: https://pubmed.ncbi.nlm.nih.gov/30124741/
- Sharma V, Minhas R. Explanatory models are needed to integrate RCT and observational data with the patient’s unique biology. J R Soc Med [Internet]. 2012 [cited 2024 Feb 13];105(1):11–24. Available from: https://pubmed.ncbi.nlm.nih.gov/22275494/
- Howick J, Glasziou P, Aronson JK. Evidence-based mechanistic reasoning [Internet]. Vol. 103, Journal of the Royal Society of Medicine. Royal Society of Medicine Press; 2010 [cited 2020 Aug 8]. p. 433–41. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966890/
- Ellison DL, Moran HR. Vitamin D: Vitamin or Hormone? Nurs Clin North Am [Internet]. 2021 Mar 1 [cited 2024 Apr 21];56(1):47–57. Available from: https://pubmed.ncbi.nlm.nih.gov/33549285/
- Laird E, Ward M, McSorley E, Strain JJ, Wallace J. Vitamin D and Bone Health; Potential Mechanisms. Nutrients [Internet]. 2010 [cited 2024 Feb 11];2(7):693. Available from: /pmc/articles/PMC3257679/
- Charoenngam N, Holick MF. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients [Internet]. 2020 Jul 1 [cited 2024 Apr 21];12(7):1–28. Available from: https://pubmed.ncbi.nlm.nih.gov/32679784/
- Dankers W, Davelaar N, Van Hamburg JP, Van De Peppel J, Colin EM, Lubberts E. Human Memory Th17 Cell Populations Change Into Anti-inflammatory Cells With Regulatory Capacity Upon Exposure to Active Vitamin D. Front Immunol [Internet]. 2019 [cited 2024 Jan 17];10(JULY). Available from: https://pubmed.ncbi.nlm.nih.gov/31379807/
- Dankers W, Colin EM, van Hamburg JP, Lubberts E. Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. Front Immunol [Internet]. 2017 Jan 20 [cited 2024 Apr 21];7(JAN). Available from: https://pubmed.ncbi.nlm.nih.gov/28163705/
- Feng X, Lv C, Wang F, Gan K, Zhang M, Tan W. Modulatory Effect of 1,25-Dihydroxyvitamin D3 on IL1β-Induced RANKL, OPG, TNFα, and IL-6 Expression in Human Rheumatoid Synoviocyte MH7A. Clin Dev Immunol [Internet]. 2013 [cited 2024 Jan 18];2013. Available from: /pmc/articles/PMC3855937/
- Anaparti V, Meng X, Hemshekhar M, Smolik I, Mookherjee N, El-Gabalawy H. Circulating levels of free 25(OH)D increase at the onset of rheumatoid arthritis. PLoS One [Internet]. 2019 Sep 1 [cited 2024 Jan 17];14(9). Available from: https://pubmed.ncbi.nlm.nih.gov/31557191/
- Antico A, Tampoia M, Tozzoli R, Bizzaro N. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev [Internet]. 2012 Dec [cited 2024 Jan 25];12(2):127–36. Available from: https://pubmed.ncbi.nlm.nih.gov/22776787/
- Colin EM, Asmawidjaja PS, Van Hamburg JP, Mus AMC, Van Driel M, Hazes JMW, et al. 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum [Internet]. 2010 Jan [cited 2024 Jan 18];62(1):132–42. Available from: https://pubmed.ncbi.nlm.nih.gov/20039421/
- Zhou L, Wang J, Li J, Li T, Chen Y, June RR, et al. 1,25-Dihydroxyvitamin D3 Ameliorates Collagen-Induced Arthritis via Suppression of Th17 Cells Through miR-124 Mediated Inhibition of IL-6 Signaling. Front Immunol [Internet]. 2019 [cited 2024 Jan 17];10(FEB). Available from: https://pubmed.ncbi.nlm.nih.gov/30792721/
- Tian R, Li X, Li Y, Wang K, Wang C, Yang P. 1,25(OH)2D3 promotes chondrocyte apoptosis and restores physical function in rheumatoid arthritis through the NF-κB signal pathway. Biomed Pharmacother [Internet]. 2018 Oct 1 [cited 2024 Jan 17];106:149–55. Available from: https://pubmed.ncbi.nlm.nih.gov/29957465/
- Jeffery LE, Henley P, Marium N, Filer A, Sansom DM, Hewison M, et al. Decreased sensitivity to 1,25-dihydroxyvitamin D3 in T cells from the rheumatoid joint. J Autoimmun [Internet]. 2018 Mar 1 [cited 2024 Jan 17];88:50–60. Available from: https://pubmed.ncbi.nlm.nih.gov/29066221/
- Laragione T, Shah A, Gulko PS. The Vitamin D Receptor Regulates Rheumatoid Arthritis Synovial Fibroblast Invasion and Morphology. Mol Med [Internet]. 2012 Feb [cited 2024 Feb 11];18(1):194. Available from: /pmc/articles/PMC3320133/
- Fan P, He L, Hu N, Luo J, Zhang J, Mo LF, et al. Effect of 1,25-(OH)2D3 on Proliferation of Fibroblast-Like Synoviocytes and Expressions of Pro-Inflammatory Cytokines through Regulating MicroRNA-22 in a Rat Model of Rheumatoid Arthritis. Cell Physiol Biochem [Internet]. 2017 Jun 1 [cited 2024 Jan 18];42(1):145–55. Available from: https://pubmed.ncbi.nlm.nih.gov/28528333/
- Inaba M, Yukioka K, Furumitsu Y, Murano M, Goto H, Nishizawa Y, et al. Positive correlation between levels of IL-1 or IL-2 and 1,25(OH)2D/25-OH-D ratio in synovial fluid of patients with rheumatoid arthritis. Life Sci [Internet]. 1997 Aug 1 [cited 2024 Jan 18];61(10):977–85. Available from: https://pubmed.ncbi.nlm.nih.gov/9296336/
- Huhtakangas JA, Veijola J, Turunen S, Karjalainen A, Valkealahti M, Nousiainen T, et al. 1,25(OH)2D3 and calcipotriol, its hypocalcemic analog, exert a long-lasting anti-inflammatory and anti-proliferative effect in synoviocytes cultured from patients with rheumatoid arthritis and osteoarthritis. J Steroid Biochem Mol Biol [Internet]. 2017 Oct 1 [cited 2024 Jan 18];173:13–22. Available from: https://pubmed.ncbi.nlm.nih.gov/28167299/
- Gu X, Gu B, Lv X, Yu Z, Wang R, Zhou X, et al. 1, 25-dihydroxy-vitamin D3 with tumor necrosis factor-alpha protects against rheumatoid arthritis by promoting p53 acetylation-mediated apoptosis via Sirt1 in synoviocytes. Cell Death Dis [Internet]. 2016 [cited 2024 Jan 17];7(10). Available from: https://pubmed.ncbi.nlm.nih.gov/27763638/
- Luo J, Wen H, Guo H, Cai Q, Li S, Li X. 1,25-dihydroxyvitamin D3 inhibits the RANKL pathway and impacts on the production of pathway-associated cytokines in early rheumatoid arthritis. Biomed Res Int [Internet]. 2013 [cited 2024 Jan 18];2013. Available from: https://pubmed.ncbi.nlm.nih.gov/23710436/
- Hong Q, Xu J, Xu S, Lian L, Zhang M, Ding C. Associations between serum 25-hydroxyvitamin D and disease activity, inflammatory cytokines and bone loss in patients with rheumatoid arthritis. Rheumatology (Oxford) [Internet]. 2014 Jul 28 [cited 2024 Feb 13];53(11):1–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24907153/
- Lin J, Liu J, Davies ML, Chen W. Serum Vitamin D Level and Rheumatoid Arthritis Disease Activity: Review and Meta-Analysis. PLoS One [Internet]. 2016 Jan 11 [cited 2024 Jan 18];11(1). Available from: https://pubmed.ncbi.nlm.nih.gov/26751969/
- Takayanagi H, Oda H, Yamamoto S, Kawaguchi H, Tanaka S, Nishikawa T, et al. A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem Biophys Res Commun [Internet]. 1997 Nov 17 [cited 2024 Jan 18];240(2):279–86. Available from: https://pubmed.ncbi.nlm.nih.gov/9388467/
- Harrison SR, Jutley G, Li D, Sahbudin I, Filer A, Hewison M, et al. Vitamin D and early rheumatoid arthritis. BMC Rheumatol [Internet]. 2020 Jul 27 [cited 2024 Feb 13];4(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32728658/
- Buondonno I, Rovera G, Sassi F, Rigoni MM, Lomater C, Parisi S, et al. Vitamin D and immunomodulation in early rheumatoid arthritis: A randomized double-blind placebo-controlled study. PLoS One [Internet]. 2017 Jun 1 [cited 2024 Jan 18];12(6). Available from: https://pubmed.ncbi.nlm.nih.gov/28582403/
- Lyons RA, Johansen A, Brophy S, Newcombe RG, Phillips CJ, Lervy B, et al. Preventing fractures among older people living in institutional care: a pragmatic randomised double blind placebo controlled trial of vitamin D supplementation. Osteoporos Int [Internet]. 2007 Jun [cited 2024 Jan 25];18(6):811–8. Available from: https://pubmed.ncbi.nlm.nih.gov/17473911/
- Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev [Internet]. 2008 Jun [cited 2024 Apr 21];223(1):87. Available from: /pmc/articles/PMC3299089/
- Curtis MM, Way SS. Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology [Internet]. 2009 Feb [cited 2024 Apr 21];126(2):177. Available from: /pmc/articles/PMC2632692/
- Yarwood A, Viatte S, Plant D, Morgan AW, Isaacs J, Wilson AG, et al. Testing the role of vitamin D in response to antitumour necrosis factor α therapy in a UK cohort: a Mendelian randomisation approach. Ann Rheum Dis [Internet]. 2014 [cited 2024 Feb 13];73(5):938–40. Available from: https://pubmed.ncbi.nlm.nih.gov/24323394/
- Chang X, Zhao Y, Pan J, Fang K, Wang Y, Yan X, et al. Vitamin D-binding protein (group-specific component) has decreased expression in rheumatoid arthritis. Clin Exp Rheumatol [Internet]. 2012 Jul [cited 2024 Feb 13];30(4):525–33. Available from: https://www.clinexprheumatol.org/abstract.asp?a=5268
- Rozmus D, Ciesielska A, Płomiński J, Grzybowski R, Fiedorowicz E, Kordulewska N, et al. Vitamin D Binding Protein (VDBP) and Its Gene Polymorphisms—The Risk of Malignant Tumors and Other Diseases. Int J Mol Sci 2020, Vol 21, Page 7822 [Internet]. 2020 Oct 22 [cited 2024 Apr 20];21(21):7822. Available from: https://www.mdpi.com/1422-0067/21/21/7822/htm
- Bagheri-Hosseinabadi Z, Imani D, Yousefi H, Abbasifard M. Vitamin D receptor (VDR) gene polymorphism and risk of rheumatoid arthritis (RA): systematic review and meta-analysis. Clin Rheumatol [Internet]. 2020 Dec 1 [cited 2024 Jan 18];39(12):3555–69. Available from: https://pubmed.ncbi.nlm.nih.gov/32445089/
- Herly M, Stengaard-Pedersen K, Vestergaard P, Christensen R, Möller S, Østergaard M, et al. Impact of season on the association between vitamin D levels at diagnosis and one-year remission in early Rheumatoid Arthritis. Sci Rep [Internet]. 2020 Dec 1 [cited 2024 Jan 25];10(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32355224/
- Richard A, Rohrmann S, Quack Lötscher KC. Prevalence of Vitamin D Deficiency and Its Associations with Skin Color in Pregnant Women in the First Trimester in a Sample from Switzerland. Nutrients [Internet]. 2017 Mar 10 [cited 2024 Apr 21];9(3). Available from: /pmc/articles/PMC5372923/
- Youssef DA, Miller CWT, El-Abbassi AM, Cutchins DC, Cutchins C, Grant WB, et al. Antimicrobial implications of vitamin D. Dermatoendocrinol [Internet]. 2011 Oct [cited 2024 Apr 21];3(4):220. Available from: /pmc/articles/PMC3256336/
- Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous Antimicrobial Peptides and Skin Infections in Atopic Dermatitis. N Engl J Med [Internet]. 2002 Oct 10 [cited 2024 Apr 21];347(15):1151–60. Available from: https://www.nejm.org/doi/full/10.1056/NEJMoa021481
- Borsche L, Glauner B, Mendel J von. COVID-19 Mortality Risk Correlates Inversely with Vitamin D3 Status, and a Mortality Rate Close to Zero Could Theoretically Be Achieved at 50 ng/mL 25(OH)D3: Results of a Systematic Review and Meta-Analysis. Nutrients [Internet]. 2021 Oct 1 [cited 2024 Apr 20];13(10). Available from: /pmc/articles/PMC8541492/
- Black RJ, Cross M, Haile LM, Culbreth GT, Steinmetz JD, Hagins H, et al. Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol [Internet]. 2023 Oct 1 [cited 2024 Feb 11];5(10):e594–610. Available from: http://www.thelancet.com/article/S2665991323002114/fulltext
- Jolliffe DA, Camargo CA, Sluyter JD, Aglipay M, Aloia JF, Ganmaa D, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol [Internet]. 2021 May 1 [cited 2024 Apr 21];9(5):276–92. Available from: http://www.thelancet.com/article/S2213858721000516/fulltext
- Charan J, Goyal JP, Saxena D, Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J Pharmacol Pharmacother [Internet]. 2012 Oct [cited 2024 Apr 21];3(4):300. Available from: /pmc/articles/PMC3543548/
- Donta ST. Issues in the Diagnosis and Treatment of Lyme Disease. Open Neurol J [Internet]. 2012 Dec 11 [cited 2024 Apr 20];6(1):140. Available from: /pmc/articles/PMC3520031/
- Dvir E, Rosa C, Handel I, Mellanby RJ, Schoeman JP. Vitamin D status in dogs with babesiosis. Onderstepoort J Vet Res [Internet]. 2019 [cited 2024 Apr 20];86(1). Available from: /pmc/articles/PMC6494922/
- Lei J, Xiao W, Zhang J, Liu F, Xin C, Zhou B, et al. Antifungal activity of vitamin D3 against Candida albicans in vitro and in vivo. Microbiol Res. 2022 Dec 1;265:127200.
- Gunville CF, Mourani PM, Ginde AA. The Role of Vitamin D in Prevention and Treatment of Infection. Inflamm Allergy Drug Targets [Internet]. 2013 Jul 7 [cited 2024 Apr 20];12(4):239. Available from: /pmc/articles/PMC3756814.
VITAMIN D and CANCER: Dr William Makis
* https://makismd.substack.com.
The impact of vitamin D on cancer: A mini review. The Journal of Steroid Biochemistry and Molecular Biology 2023, 231:106308. https://www.sciencedirect.com/science/article/pii/S0960076023000638.
Interplay of Vitamin D and SIRT1 in Tissue-Specific Metabolism—Potential Roles in Prevention and Treatment of Non-Communicable Diseases Including Cancer. International Journal of Molecular Sciences 2023, 24:6154. https://www.mdpi.com/1422-0067/24/7/6154.
Efficacy of vitamin D3 supplementation on cancer mortality: Systematic review and individual patient data meta-analysis of randomised controlled trials. Ageing Research Reviews 2023, 87:101923. https://www.sciencedirect.com/science/article/pii/S156816372300082X.
Vitamin D in Cancer Prevention: Gaps in Current Knowledge and Room for Hope. Nutrients 2022, 14:4512. https://www.mdpi.com/2072-6643/14/21/4512.
- TRAUMA AND CONNECTIVE TISSUE – Anne Pemberton
https://www.nature.com/articles/490169a#:~:text=The longer a woman had,the shorter were her telomeres. - https://www.sciencedirect.com/science/article/pii/S0306453018309089#:~:text=Chronic stressors, such as chronic,stress and shortened telomere lengths.
- https://pubmed.ncbi.nlm.nih.gov/35018722/
- https://www.psychologytoday.com/us/blog/the-neurodivergent-therapist/202201/autism-and-northern-ireland
- https://onlinelibrary.wiley.com/doi/abs/10.1002/aur.2669
- https://pubmed.ncbi.nlm.nih.gov/35412212/
- https://youtu.be/Rik5E7wey0w?si=8jvkT9q0an3W1lCD
- https://www.ajpmonline.org/article/S0749-3797(98)00017-8/fulltext
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720013/
- https://drlaurenceheller.com/product/healing-developmental-trauma-how-early-trauma-affects-self-regulation-self-image-and-the-capacity-for-relationship/
- https://foodforthebrain.org/autismmasterclass/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964013/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868418/#:~:text=The Polyvagal Theory links the,and communication behaviors and disorders
- https://www.spectrumnews.org/news/anorexias-link-to-autism-explained/
- https://pubmed.ncbi.nlm.nih.gov/23981537/
- https://onyxintegrative.com/solar-plexus-chakra-healing/
- Staugaard (2012) The Vital Psoas Muscle: Connecting Physical, Emotional, and Spiritual Well-Being
- https://feldenkrais.com/about-the-feldenkrais-method/
- Hanna T (2004) Somatics: Reawakening The Mind’s Control Of Movement, Flexibility, And Health
- Hanna T (2004) Somatics: Reawakening The Mind’s Control Of Movement, Flexibility, And Health
- https://www.sciencedirect.com/science/article/pii/S0885392404002647
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556860/#B4
- https://www.researchgate.net/publication/370418678_The_Fascial_Network_Our_Richest_Sensory_Organ
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143136/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910527/#:~:text=A focal fascial defect can,neuropathic symptoms with nerve involvement.
- https://pubmed.ncbi.nlm.nih.gov/21584283/
- https://pubmed.ncbi.nlm.nih.gov/24256735/
- https://youtu.be/P8eys2Lg49o?si=HzLxsDxdM7vk44x5
- https://pubmed.ncbi.nlm.nih.gov/23444198/
- https://pubmed.ncbi.nlm.nih.gov/32310416/
- https://www.youtube.com/user/somanaut/videos
- Somjen G M. Anatomy of the superficial venous system. Dermatol Surg. 1995;21:35–45.
- https://pubmed.ncbi.nlm.nih.gov/485047/
- Somjen G M. Anatomy of the superficial venous system. Dermatol Surg. 1995;21:35–45.
- https://stretchcoach.com/articles/myotatic-stretch-reflex/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075841/
- Black and Hunt (2017)The cellulite myth: Its not fat its fascia p23. Post Hill
- Staugaard-Jones (2012) The Vital Psoas. Connecting physical, emotional and spiritual well-being. p90
- https://www.ncbi.nlm.nih.gov/books/NBK535418/
- Staugaard-Jones (2012) The vital psoas muscle: connecting physical, emotional and spiritual well-being (ISBN: 9781583944585)
- https://www.healthline.com/health/mind-body/the-powerful-connection-between-your-hips-and-your-emotions#hips-and-emotions
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646296/
- https://napacenter.org/hypotonia-and-asd/#:~:text=Low muscle tone is commonly,onto their tiptoes to walk.
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754787/
- https://autismawarenesscentre.com/what-is-interoception-and-how-does-it-impact-autism/
- https://www.nature.com/articles/s41598-020-60405-8
- https://www.sciencedirect.com/science/article/abs/pii/S0021929099000615
- https://pubmed.ncbi.nlm.nih.gov/37092789/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868418/
- https://positivepsychology.com/polyvagal-theory/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408630/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555036/
- http://www.holotropic.com/holotropic-breathwork/about-holotropic-breathwork/
RESEARCH UPDATE
Prebiotic selection influencing inflammatory bowel disease treatment outcomes: a review of the preclinical and clinical evidence. eGastroenterology 2024, 2:e100055. doi:10.1136/egastro-2023-100055. https://egastroenterology.bmj.com/content/2/2/e100055.
The effects of genetic and modifiable risk factors on brain regions vulnerable to ageing and disease. Nature Communications 2024, 15:2576. https://doi.org/10.1038/s41467-024-46344-2.
Cnicin promotes functional nerve regeneration. Phytomedicine, 2024; 155641 DOI: 10.1016/j.phymed.2024.155641. https://www.sciencedirect.com/science/article/pii/S0944711324003003?via%3Dihub.
A low FODMAP diet plus traditional dietary advice versus a low-carbohydrate diet versus pharmacological treatment in irritable bowel syndrome (CARBIS): a single-centre, single-blind, randomised controlled trial. The Lancet Gastroenterology & Hepatology, 2024; DOI: 10.1016/S2468-1253(24)00045-1.
Demographic and health characteristics associated with fish and n-3 fatty acid supplement intake during pregnancy: results from pregnancy cohorts in the ECHO programme. Public Health Nutrition 2024, 27:e94. https://www.cambridge.org/core/product/0E01EA1F752824D540A5D28E78CC23E6.
Microbiota metabolism of intestinal amino acids impacts host nutrient homeostasis and physiology. Cell Host & Microbe 2024, Apr 23: https://www.cell.com/cell-host-microbe/abstract/S1931-3128(24)00121-5.
Tocotrienols Prevent the Decline of Learning Ability in High-Fat, High-Sucrose Diet-Fed C57BL/6 Mice. International Journal of Molecular Sciences 2024, 25:3561. https://www.mdpi.com/1422-0067/25/6/3561
April 2024
WELCOME
BMA demands inquiry into use of physician associates on medical rotas. BMJ 2024, Mar 18, 384 doi: https://doi.org/10.1136/bmj.q683.
NEWS
Diet, Pace of Biological Aging, and Risk of Dementia in the Framingham Heart Study. Annals of Neurology 2024: https://onlinelibrary.wiley.com/doi/10.1002/ana.26900.
MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement 2015, 11:1007-14. https://pubmed.ncbi.nlm.nih.gov/25681666.
DunedinPACE, a DNA methylation biomarker of the pace of aging. Elife 2022, 11: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853656.
Menopause 2024. The Lancet: https://www.thelancet.com/series/menopause-2024.
Effectiveness of ginkgo diterpene lactone meglumine on cognitive function in patients with acute ischemic stroke. Open Medicine 2024, 19: https://doi.org/10.1515/med-2024-0908.
Cognitive Impairment After Ischemic and Hemorrhagic Stroke: A Scientific Statement From the American Heart Association/American Stroke Association. Stroke 2023, 54:e272-e291: https://pubmed.ncbi.nlm.nih.gov/37125534.
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol 2024 (online Mar 14.): https://doi.org/10.1016/S1474-4422(24)00038-3.
“Benefits data reveals extent of claims over mental health”. The Times, March 14, 2024: https://www.thetimes.co.uk/article/e1535434-396f-4f52-ae05-e4c8eadce6f0.
Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans. Science 2024, 383:eadj9223. https://www.science.org/doi/abs/10.1126/science.adj9223.
Effect of gut microbiome modulation on muscle function and cognition: the PROMOTe randomised controlled trial. Nat Commun 2024, 15:1859.
https://pubmed.ncbi.nlm.nih.gov/38424099.
Expert consensus on nutrition and lower-carbohydrate diets: An evidence- and equity-based approach to dietary guidance. Front Nutr 2024, 11:1376098. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937533.
Interaction of sleep and emotion across the menstrual cycle. Journal of Sleep Research 2024, Feb 12.
(2024). Interaction of sleep and emotion across the menstrual cycle. Journal of Sleep Medicine. Doi: 10.1111/jsr.14185
NIACIN
- The Butterfly Caste: A Social History of Pellagra in the South (Contributions in American History): 9780837162768: Medicine & Health Science Books @ Amazon.Com Available online: https://www.amazon.com/Butterfly-Caste-Pellagra-Contributions-American/dp/0837162769.
- Park, Y.K.; Sempos, C.T.; Barton, C.N.; Vanderveen, J.E.; Yetley, E.A. Effectiveness of Food Fortification in the United States: The Case of Pellagra. Am J Public Health 2000, 90, 727-738, doi:10.2105/ajph.90.5.727. https://pubmed.ncbi.nlm.nih.gov/10800421
- Penberthy, W. Todd Niacin Rescues Cannibalistic Hamsters The Historical Significance of 1940s Mandatory Niacin Enrichment 2017. http://orthomolecular.org/resources/omns/v13n09.shtml
- Cleveland Clinic-Led Study Discovers Link between High Levels of Niacin – a Common B Vitamin – and Heart Disease – Cleveland Clinic Newsroom Available online: https://newsroom.clevelandclinic.org/2024/02/19/cleveland-clinic-led-study-discovers-link-between-high-levels-of-niacin-a-common-b-vitamin-and-heart-disease/(accessed on 21 February 2024).
- High Levels of Niacin May Increase Heart Disease Risk: What to Know about the B Vitamin Available online: https://www.nbcnews.com/health/heart-health/high-levels-niacin-may-increase-heart-disease-risk-know-b-vitamin-rcna139249(accessed on 21 February 2024).
- Ferrell, M.; Wang, Z.; Anderson, J.T.; Li, X.S.; Witkowski, M.; DiDonato, J.A.; Hilser, J.R.; Hartiala, J.A.; Haghikia, A.; Cajka, T.; et al. A Terminal Metabolite of Niacin Promotes Vascular Inflammation and Contributes to Cardiovascular Disease Risk. Nat Med 2024, 30, 424-434, doi:10.1038/s41591-023-02793-8. https://doi.org/10.1038/s41591-023-02793-8, https://pubmed.ncbi.nlm.nih.gov/38374343
- Creider, J.C.; Hegele, R.A.; Joy, T.R. Niacin: Another Look at an Underutilized Lipid-Lowering Medication. Nat Rev Endocrinol 2012, 8, 517-528, doi:10.1038/nrendo.2012.22. https://pubmed.ncbi.nlm.nih.gov/22349076
- McConnell, Stephen; Penberthy, W. Todd Reversing Chronic Kidney Disease with Niacin and Sodium Bicarbonate. Orthomolecular Medical News Service 2021. http://orthomolecular.org/resources/omns/v17n22.shtml
- Yoshimura, N.; Yamada, K.; Ono, T.; Notoya, M.; Yukioka, H.; Takahashi, R.; Wakino, S.; Kanda, T.; Itoh, H. N-Methyl-2-Pyridone-5-Carboxamide (N-Me-2PY) Has Potent Anti-Fibrotic and Anti-Inflammatory Activity in a Fibrotic Kidney Model: Is It an Old Uremic Toxin? Clin Exp Nephrol 2023, 27, 901-911, doi:10.1007/s10157-023-02379-1. https://link.springer.com/article/10.1007/s10157-023-02379-1
- Lenglet, A.; Liabeuf, S.; Bodeau, S.; Louvet, L.; Mary, A.; Boullier, A.; Lemaire-Hurtel, A.S.; Jonet, A.; Sonnet, P.; Kamel, S.; et al. N-Methyl-2-Pyridone-5-Carboxamide (2PY)-Major Metabolite of Nicotinamide: An Update on an Old Uremic Toxin. Toxins (Basel) 2016, 8, 339, doi:10.3390/toxins8110339. https://www.researchgate.net/publication/310432989_N-methyl-2-pyridone-5-carboxamide_2PY-Major_Metabolite_of_Nicotinamide_An_Update_on_an_Old_Uremic_Toxin
- Penberthy, W.T. Nicotinic Acid-Mediated Activation of Both Membrane and Nuclear Receptors towards Therapeutic Glucocorticoid Mimetics for Treating Multiple Sclerosis. PPAR Res 2009, 2009, 853707, doi:10.1155/2009/853707. https://pubmed.ncbi.nlm.nih.gov/19461950
- Taing, K.; Chen, L.; Weng, H.-R. Emerging Roles of GPR109A in Regulation of Neuroinflammation in Neurological Diseases and Pain. Neural Regen Res 2023, 18, 763-768, doi:10.4103/1673-5374.354514. https://pubmed.ncbi.nlm.nih.gov/36204834
- Stach, K.; Zaddach, F.; Nguyen, X.D.; Elmas, E.; Kralev, S.; Weiss, C.; Borggrefe, M.; Kälsch, T. Effects of Nicotinic Acid on Endothelial Cells and Platelets. Cardiovasc Pathol 2012, 21, 89-95, doi:10.1016/j.carpath.2011.04.002. https://pubmed.ncbi.nlm.nih.gov/21632263
- Gomaraschi, M.; Ossoli, A.; Adorni, M.P.; Damonte, E.; Niesor, E.; Veglia, F.; Franceschini, G.; Benghozi, R.; Calabresi, L. Fenofibrate and Extended-Release Niacin Improve the Endothelial Protective Effects of HDL in Patients with Metabolic Syndrome. Vascul Pharmacol 2015, 74, 80-86, doi:10.1016/j.vph.2015.06.014. https://pubmed.ncbi.nlm.nih.gov/26133666
- Digby, J.E.; Martinez, F.; Jefferson, A.; Ruparelia, N.; Chai, J.; Wamil, M.; Greaves, D.R.; Choudhury, R.P. Anti-Inflammatory Effects of Nicotinic Acid in Human Monocytes Are Mediated by GPR109A Dependent Mechanisms. Arterioscler Thromb Vasc Biol 2012, 32, 669-676, doi:10.1161/ATVBAHA.111.241836. https://pubmed.ncbi.nlm.nih.gov/22267479
- Ganji, S.H.; Qin, S.; Zhang, L.; Kamanna, V.S.; Kashyap, M.L. Niacin Inhibits Vascular Oxidative Stress, Redox-Sensitive Genes, and Monocyte Adhesion to Human Aortic Endothelial Cells. Atherosclerosis 2009, 202, 68-75, doi:10.1016/j.atherosclerosis.2008.04.044. https://pubmed.ncbi.nlm.nih.gov/18550065
- Motawi, T.K.; Darwish, H.A.; Hamed, M.A.; El-Rigal, N.S.; Naser, A.F.A. A Therapeutic Insight of Niacin and Coenzyme Q10 Against Diabetic Encephalopathy in Rats. Mol Neurobiol 2017, 54, 1601-1611, doi:10.1007/s12035-016-9765-x. https://pubmed.ncbi.nlm.nih.gov/26867655
- Wu, B.J.; Chen, K.; Barter, P.J.; Rye, K.-A. Niacin Inhibits Vascular Inflammation via the Induction of Heme Oxygenase-1. Circulation 2012, 125, 150-158, doi:10.1161/CIRCULATIONAHA.111.053108. https://pubmed.ncbi.nlm.nih.gov/22095827
- D’Andrea, E.; Hey, S.P.; Ramirez, C.L.; Kesselheim, A.S. Assessment of the Role of Niacin in Managing Cardiovascular Disease Outcomes: A Systematic Review and Meta-Analysis. JAMA Netw Open 2019, 2, e192224, doi:10.1001/jamanetworkopen.2019.2224. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2730481
- Schandelmaier, S.; Briel, M.; Saccilotto, R.; Olu, K.K.; Arpagaus, A.; Hemkens, L.G.; Nordmann, A.J. Niacin for Primary and Secondary Prevention of Cardiovascular Events. Cochrane Database Syst Rev 2017, 6, CD009744, doi:10.1002/14651858.CD009744.pub2. https://www.cochranelibrary.com/web/cochrane/content?templateType=information&urlTitle=%2Fcdsr%2Fdoi%2F10.1002%2F14651858.CD009744.pub2&doi=10.1002%2F14651858.CD009744.pub2&type=cdsr&contentLanguage=
- Garg, A.; Sharma, A.; Krishnamoorthy, P.; Garg, J.; Virmani, D.; Sharma, T.; Stefanini, G.; Kostis, J.B.; Mukherjee, D.; Sikorskaya, E. Role of Niacin in Current Clinical Practice: A Systematic Review. Am J Med 2017, 130, 173-187, doi:10.1016/j.amjmed.2016.07.038. https://www.amjmed.com/article/S0002-9343(16)31058-0/fulltext
- Vittone, F.; Chait, A.; Morse, J.S.; Fish, B.; Brown, B.G.; Zhao, X.-Q. Niacin plus Simvastatin Reduces Coronary Stenosis Progression Among Patients with Metabolic Syndrome Despite a Modest Increase in Insulin Resistance: A Subgroup Analysis of the HDL-Atherosclerosis Treatment Study (HATS). J Clin Lipidol 2007, 1, 203-210, doi:10.1016/j.jacl.2007.05.003. https://pubmed.ncbi.nlm.nih.gov/18591993/
- Massive New Study Shows Niacin and NAD+ Cause Heart Disease?? Is This True?; 2024; https://youtu.be/xInw3F2AVTg?si=-khShvyzbhLHXezN
- Niacin (Vitamin B3): Flushing Away Heart Disease. [4 Studies]; 2023; https://www.youtube.com/watch?v=N17cmKCVxcw
- Can Niacin (Vitamin B3) Reduce Heart Disease? [Study 198 – 201 Analysis]; 2023; https://www.youtube.com/watch?v=p10JZ9crwXo
- Guyton, J.R.; Bays, H.E. Safety Considerations with Niacin Therapy. Am J Cardiol 2007, 99, 22C-31C, doi:10.1016/j.amjcard.2006.11.018. https://pubmed.ncbi.nlm.nih.gov/17368274
- Canner, P.L.; Berge, K.G.; Wenger, N.K.; Stamler, J.; Friedman, L.; Prineas, R.J.; Friedewald, W. Fifteen Year Mortality in Coronary Drug Project Patients: Long-Term Benefit with Niacin. J Am Coll Cardiol 1986, 8, 1245-1255, doi:10.1016/s0735-1097(86)80293-5. https://pubmed.ncbi.nlm.nih.gov/3782631
- Carlson, L.A.; Rosenhamer, G. Reduction of Mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by Combined Treatment with Clofibrate and Nicotinic Acid. Acta Med Scand 1988, 223, 405-418, doi:10.1111/j.0954-6820.1988.tb15891.x. https://pubmed.ncbi.nlm.nih.gov/3287837
- Tsushima, Y.; Hatipoglu, B. Statin Intolerance: A Review and Update. Endocr Pract 2023, 29, 566-571, doi:10.1016/j.eprac.2023.03.004. https://pubmed.ncbi.nlm.nih.gov/36958647/
- Singh, H.; Sikarwar, P.; Khurana, S.; Sharma, J. Assessing the Incidence of New-Onset Diabetes Mellitus with Statin Use: A Systematic Review of the Systematic Reviews and Meta-Analyses. touchREV Endocrinol 2022, 18, 96-101, doi:10.17925/EE.2022.18.2.96. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835812/
- Lipitor Thief of Memory: Duane Graveline, Kilmer S. McCully, Jay S. Cohen: 9781424301621: Amazon.Com: Books Available online: https://www.amazon.com/Lipitor-Thief-Memory-Duane-Graveline/dp/1424301629(accessed on 16 February 2021).
- Effect of an Increase in Lp(a) Following Statin Therapy on Cardiovascular Prognosis in Secondary Prevention Population of Coronary Artery Disease – PubMed Available online: https://pubmed.ncbi.nlm.nih.gov/36348286/(accessed on 7 March 2024).
- Willeit, P.; Ridker, P.M.; Nestel, P.J.; Simes, J.; Tonkin, A.M.; Pedersen, T.R.; Schwartz, G.G.; Olsson, A.G.; Colhoun, H.M.; Kronenberg, F.; et al. Baseline and On-Statin Treatment Lipoprotein(a) Levels for Prediction of Cardiovascular Events: Individual Patient-Data Meta-Analysis of Statin Outcome Trials. Lancet 2018, 392, 1311-1320, doi:10.1016/S0140-6736(18)31652-0. https://pubmed.ncbi.nlm.nih.gov/30293769/
- Marcovina, S.M.; Moriarty, P.M.; Koschinsky, M.L.; Guyton, J.R. JCL Roundtable-Lipoprotein(a): The Emerging Risk Factor. Journal of Clinical Lipidology 2018, 12, 1335-1345, doi:10.1016/j.jacl.2018.11.003. https://pubmed.ncbi.nlm.nih.gov/30527801/
- FDA Drug Safety Communication: Important Safety Label Changes to Cholesterol-Lowering Statin Drugs | FDA Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-important-safety-label-changes-cholesterol-lowering-statin-drugs(accessed on 7 March 2024).
- Zigmont, V.A.; Shoben, A.B.; Lu, B.; Kaye, G.L.; Clinton, S.K.; Harris, R.E.; Olivo-Marston, S.E. Statin Users Have an Elevated Risk of Dysglycemia and New-Onset-Diabetes. Diabetes/Metabolism Research and Reviews 2019, 35, e3189, doi:10.1002/dmrr.3189. https://onlinelibrary.wiley.com/doi/10.1002/dmrr.3189
- Sanz-Cuesta, B.E.; Saver, J.L. Lipid-Lowering Therapy and Hemorrhagic Stroke Risk. Stroke 2021, 52, 3142-3150, doi:10.1161/STROKEAHA.121.034576. https://www.ahajournals.org/doi/10.1161/STROKEAHA.121.034576
- Pirinen, E.; Auranen, M.; Khan, N.A.; Brilhante, V.; Urho, N.; Pessia, A.; Hakkarainen, A.; Kuula, J.; Heinonen, U.; Schmidt, M.S.; et al. Niacin Cures Systemic NAD+ Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab 2020, 31, 1078-1090.e5, doi:10.1016/j.cmet.2020.04.008. https://pubmed.ncbi.nlm.nih.gov/32386566
- Li, S.; Wang, J.; Zhang, B.; Li, X.; Liu, Y. Diabetes Mellitus and Cause-Specific Mortality: A Population-Based Study. Diabetes Metab J 2019, 43, 319-341, doi:10.4093/dmj.2018.0060. https://pubmed.ncbi.nlm.nih.gov/31210036/
- Gasperi, V.; Sibilano, M.; Savini, I.; Catani, M.V. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci 2019, 20, 974, doi:10.3390/ijms20040974. https://pubmed.ncbi.nlm.nih.gov/30813414/
- Diamond, D.M.; Ravnskov, U. How Statistical Deception Created the Appearance That Statins Are Safe and Effective in Primary and Secondary Prevention of Cardiovascular Disease. Expert Rev Clin Pharmacol 2015, 8, 201-210, doi:10.1586/17512433.2015.1012494. https://www.researchgate.net/publication/272189007_How_statistical_deception_created_the_appearance_that_statins_are_safe_and_effective_in_primary_and_secondary_prevention_of_cardiovascular_disease
- Hoffer, A. Adventures in Psychiatry: The Scientific Memoirs of Dr. Abram Hoffer; KOS Publishing: Caledon, Ont., 2005; ISBN 978-0-9731945-6-2.
- Hoffer, A.; Prousky, J. Successful Treatment of Schizophrenia Requires Optimal Daily Doses of Vitamin B3. Altern Med Rev 2008, 13, 287-291. https://pubmed.ncbi.nlm.nih.gov/19238764
- Schizophrenia Is Chronic Encephalitis…and Niacin Cures It Available online: https://www.tomlevymd.com/articles/omns20231012/Schizophrenia-Is-Chronic-Encephalitis…and-Niacin-Cures-It(accessed on 21 February 2024).
- Penberthy, W.T.; Tsunoda, I. The Importance of NAD in Multiple Sclerosis. Curr. Pharm. Des. 2009, 15, 64-99, doi:10.2174/138161209787185751. https://pubmed.ncbi.nlm.nih.gov/19149604
- Wuerch, E.; Urgoiti, G.R.; Yong, V.W. The Promise of Niacin in Neurology. Neurotherapeutics 2023, 20, 1037-1054, doi:10.1007/s13311-023-01376-2. https://pubmed.ncbi.nlm.nih.gov/37084148
- Sarkar, S.; Yang, R.; Mirzaei, R.; Rawji, K.; Poon, C.; Mishra, M.K.; Zemp, F.J.; Bose, P.; Kelly, J.; Dunn, J.F.; et al. Control of Brain Tumor Growth by Reactivating Myeloid Cells with Niacin. Sci Transl Med 2020, 12, eaay9924, doi:10.1126/scitranslmed.aay9924. https://pubmed.ncbi.nlm.nih.gov/32238578
- Niacin-Mediated Rejuvenation of Macrophage/Microglia Enhances Remyelination of the Aging Central Nervous System – PubMed Available online: https://pubmed.ncbi.nlm.nih.gov/32030468/(accessed on 22 May 2022).
- High-Dose Niacin Is a Promising Treatment for Non-Alcoholic Fatty Liver Disease Available online: https://researchfeatures.com/high-dose-niacin-promising-treatment-non-alcoholic-fatty-liver-disease/(accessed on 22 February 2024).
- Jonathan Niacin, Coronary Disease and Longevity Available online: https://isom.ca/article/niacin-coronary-disease-longevity/(accessed on 22 February 2024).
- Mocchegiani, E.; Malavolta, M.; Muti, E.; Costarelli, L.; Cipriano, C.; Piacenza, F.; Tesei, S.; Giacconi, R.; Lattanzio, F. Zinc, Metallothioneins and Longevity: Interrelationships with Niacin and Selenium. Curr Pharm Des 2008, 14, 2719-2732, doi:10.2174/138161208786264188. https://pubmed.ncbi.nlm.nih.gov/18991691
- Xiang, S.; Li, Y.; Li, Y.; Zhang, J.; Pan, W.; Lu, Y.; Liu, S. Increased Dietary Niacin Intake Improves Muscle Strength, Quality, and Glucose Homeostasis in Adults over 40 Years of Age. J Nutr Health Aging 2023, 27, 709-718, doi:10.1007/s12603-023-1967-0. https://pubmed.ncbi.nlm.nih.gov/37754210
- Ganji, S.; Kamanna, S.; Kamanna, V.S.; Kashyap, M.L. Niacin Increases Human Aortic Endothelial Sirt1 Activity and Nitric Oxide: Effect on Endothelial Function and Vascular Aging. Am J Transl Res 2023, 15, 6771-6778. https://pubmed.ncbi.nlm.nih.gov/38186996
- Penberthy, W. Todd; Kristian B. Axelsen Table of NAD-Utilizing Enzymes 2022. https://www.cmescribe.com/vitamin-dependent-gene-databases
- Carlson, L.A. Nicotinic Acid: The Broad-Spectrum Lipid Drug. A 50th Anniversary Review. J Intern Med 2005, 258, 94-114, doi:10.1111/j.1365-2796.2005.01528.x. https://pubmed.ncbi.nlm.nih.gov/16018787
- Pan, J.; Zhou, Y.; Pang, N.; Yang, L. Dietary Niacin Intake and Mortality Among Individuals With Nonalcoholic Fatty Liver Disease. JAMA Netw Open 2024, 7, e2354277, doi:10.1001/jamanetworkopen.2023.54277. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2814504
- Dietary Niacin Supplementation May Reduce Mortality Risk in Patients with Non-Alcoholic Fatty Liver Disease – Physician’s Weekly Available online: https://www.physiciansweekly.com/dietary-niacin-supplementation-may-reduce-mortality-risk-in-patients-with-non-alcoholic-fatty-liver-disease/(accessed on 4 March 2024).
- Dr Abram Hoffer MD – Niacin Safety Pt1, No Danger (From Nicotinic Acid) But Must Warn About Flush; 2017; https://www.youtube.com/watch?v=UPfFAn7RSBg
- Messamore, E. The Niacin Response Biomarker as a Schizophrenia Endophenotype: A Status Update. Prostaglandins Leukot Essent Fatty Acids 2018, 136, 95-97, doi:10.1016/j.plefa.2017.06.014. https://pubmed.ncbi.nlm.nih.gov/28688777
- Orthomolecular Medicine for Everyone: Megavitamin Therapeutics for Families and Physicians : Hoffer, M.D. Ph.D. Abram, Saul, Andrew W: Amazon.Com.Au: Books Available online: https://www.amazon.com.au/Orthomolecular-Medicine-Everyone-Megavitamin-Therapeutics/dp/1681627620(accessed on 22 February 2024).
- Pieper, J.A. Understanding Niacin Formulations. Am J Manag Care 2002, 8, S308-314. https://pubmed.ncbi.nlm.nih.gov/12240702.
ALLERGY and INTOLERANCE
Association between gut microbiota development and allergy in infants born during pandemic-related social distancing restrictions. Allergy 2024, Feb 29, https://onlinelibrary.wiley.com/doi/abs/10.1111/all.16069.
When It’s Not Allergic Rhinitis: Clinical Signs to Raise a Patient’s Suspicion for Chronic Rhinosinusitis. Otolaryngology–Head and Neck Surgery 2024, https://aao-hnsfjournals.onlinelibrary.wiley.com/doi/10.1002/ohn.646.
Butyrate, Valerate, and Niacin Ameliorate Anaphylaxis by Suppressing IgE-Dependent Mast Cell Activation: Roles of GPR109A, PGE2, and Epigenetic Regulation. Journal of Immunology 2024, 212:771-784. https://doi.org/10.4049/jimmunol.2300188.
Adverse Food Reactions in Inflammatory Bowel Disease: State of the Art and Future Perspectives. Nutrients 2024, 16:351. https://www.mdpi.com/2072-6643/16/3/351.
UTIs – BEVERLEY STARSTEDT
US stats: https://liveutifree.com.
“New awareness campaign to help reduce hospital admissions for urinary tract infections”, 12 October 2023: https://www.england.nhs.uk/2023/10/new-awareness-campaign-to-help-reduce-hospital-admissions-for-urinary-tract-infections.
Epidemiology and microbiology of recurrent UTI in women in the community in Oxfordshire, UK. JAC Antimicrob Resist 2024, 6:dlad156. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781434.
Testing:
MicroGen website https://microgendx.com.
MicroGen testing in the UK: https://regeneruslabs.com/collections/microgendx.
“Ruth Kriz is a nurse practitioner…” https://liveutifree.com/ruth-kriz/#biofilmsandcuti.
Fibrinogen, Fibrin, and Fibrin Degradation Products in COVID-19. Curr Drug Targets 2022, 23:1593-1602. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316333.
RESEARCH UPDATE
Serrapeptase impairs biofilm, wall, and phospho-homeostasis of resistant and susceptible Staphylococcus aureus. Appl Microbiol Biotechnol 2023, 107:1373-1389. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898353.
Nattokinase on surgical tools: CHEM040 – Determining Nattokinase Biofilm Dispersion Pathway. https://projectboard.world/isef/project/chem040—determining-nattokinase-biofilm-dispersion-pathway. Novel Treatment of Staphylococcus aureus Device-Related Infections Using Fibrinolytic Agents. Antimicrob Agents Chemother 2018, 62: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786758.
Bacillus subtilis natto Derivatives Inhibit Enterococcal Biofilm Formation via Restructuring of the Cell Envelope. Front Microbiol 2021, 12:785351. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695906.
Potentiation and Mechanism of Berberine as an Antibiotic Adjuvant Against Multidrug-Resistant Bacteria. Infect Drug Resist 2023, 16:7313-7326. https://pubmed.ncbi.nlm.nih.gov/38023403.
The potential of lumbrokinase and serratiopeptidase for the degradation of Aβ 1-42 peptide – an in vitro and in silico approach. Int J Neurosci 2024, 134:112-123. https://pubmed.ncbi.nlm.nih.gov/35694981.
Introduction to the Special Section on Innovations in Trauma-Informed Health Care. The Permanente Journal 2024, 28:88-90. https://www.thepermanentejournal.org/doi/abs/10.7812/TPP/23.140.
Epilepsy in dogs: Sarah Rosendahl, DVM, defended the doctoral dissertation entitled “Trace Elements and Toxic Metals in Canine Idiopathic Epilepsy” in the Faculty of Veterinary Medicine, University of Helsinki, on 9 February 2024.
The dissertation has been published in the series Dissertationes Universitatis Helsingiensis and is archived online at https://helda.helsinki.fi/items/6ec5ebf4-f83d-41c7-99ec-075f6fb9a985.
An open trial of biofeedback for long COVID. Journal of Psychosomatic Research 2024, 179, 11625:3999. https://doi.org/10.1016/j.jpsychores.2024.111625.
Gut bacteria–derived serotonin promotes immune tolerance in early life. Science Immunology 2024, Mar 15, 9: eadj4775. https://www.science.org/doi/abs/10.1126/sciimmunol.adj4775.
Long-Term Effect of Randomization to Calcium and Vitamin D Supplementation on Health in Older Women : Postintervention Follow-up of a Randomized Clinical Trial. Ann Intern Med 2024, Mar 12: https://pubmed.ncbi.nlm.nih.gov/38467003.
Prolonged Gastrointestinal Manifestations After Recovery From COVID-19. Clin Gastroenterol Hepatol 2023, (in Press), S1542-3565(23)00947-3: https://pubmed.ncbi.nlm.nih.gov/37995983.
Genome-Wide Gene-Environment Interaction Analyses to Understand the Relationship between Red Meat and Processed Meat Intake and Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev 2024, 33:400-410. https://pubmed.ncbi.nlm.nih.gov/38112776.
Circadian Mechanisms in Cardiovascular and Cerebrovascular Disease. Circ Res 2024, 134:615-617. https://pubmed.ncbi.nlm.nih.gov/38484030.
The impact of gut microbiota changes on the intestinal mucus barrier in burned mice: a study using 16S rRNA and metagenomic sequencing. Burns & Trauma 2023, 11: https://doi.org/10.1093/burnst/tkad056.
Dopamine receptor D2 confers colonization resistance via microbial metabolites. Nature 2024, Mar 13: https://doi.org/10.1038/s41586-024-07179-5.
Intestinal Bacteroides modulates inflammation, systemic cytokines, and microbial ecology via propionate in a mouse model of cystic fibrosis. mBio 2024, 15 (2) DOI: 10.1128/mbio.03144-23.
CFTR is required for zinc-mediated antibacterial defense in human macrophages. Proc Natl Acad Sci U S A 2024, 121:e2315190121. https://pubmed.ncbi.nlm.nih.gov/38363865
Age-related ciliopathy: Obesogenic shortening of melanocortin-4 receptor-bearing neuronal primary cilia. Cell Metabolism 2024, Mar 6. https://www.sciencedirect.com/science/article/pii/S1550413124000561.
CASE STUDIES
Case series: raw, whole, plant-based nutrition protocol rapidly reverses symptoms in three women with systemic lupus erythematosus and Sjӧgren’s syndrome. Front Nutr 2024,11:1208074. https://www.frontiersin.org/articles/10.3389/fnut.2024.1208074/full.
Dr Brooke Goldner: https://www.goodbyelupus.com.
Lupus UK: https://lupusuk.org.uk/medical/nurses-guide/what-is-lupus.
March 2024
WELCOME
Dose dependence of prenatal fluoride exposure associations with cognitive performance at school age in three prospective studies. European Journal of Public Health 2023, 34:143-149. https://doi.org/10.1093/eurpub/ckad170.
Abatacept in individuals at high risk of rheumatoid arthritis (APIPPRA): a randomised, double-blind, multicentre, parallel, placebo-controlled, phase 2b clinical trial. Lancet 2024, Feb 13:S0140-6736(23)02649-1. https://pubmed.ncbi.nlm.nih.gov/38364839.
US Health System Ranks Last Among High-Income Countries. JAMA 2021;326(11):999. https://pubmed.ncbi.nlm.nih.gov/34546292.
“100 vaccines before age 18”: https://childrenshealthdefense.org/about-us/100-vaccines-before-age-18.
NHS vaccine schedule (total quoted includes one a year flu shots from 2-15): https://www.nhs.uk/conditions/vaccinations/nhs-vaccinations-and-when-to-have-them.
NEWS
A terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk. Nature Medicine 2024, 30:424-434. https://doi.org/10.1038/s41591-023-02793-8.
Immunological Patient Stratification in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Clinical Medicine 2024; 13 (1): 275. https://www.mdpi.com/2077-0383/13/1/275.
Alpha-santalol, a derivative of sandalwood oil prevents development of prostate cancer in TRAMP mice. Phytomedicine Plus 2024, 4 (1): 100523. https://www.sciencedirect.com/science/article/pii/S2667031324000010?via%3Dihub.
The modulatory effect of prebiotic inulin-type fructans on the microbiome profile of children with inflammatory bowel disease: a double-blind randomized controlled trial. Inflammatory Bowel Diseases 2024, 30:S10-S10. https://doi.org/10.1093/ibd/izae020.023.
Identification of inulin-responsive bacteria in the gut microbiota via multi-modal activity-based sorting. Nature Communications 2023, 14:8210. https://doi.org/10.1038/s41467-023-43448-z.
Fasting-mimicking diet causes hepatic and blood markers changes indicating reduced biological age and disease risk. Nature Communications 2024, 15:1309. https://doi.org/10.1038/s41467-024-45260-9.
A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab 2015, 22:86-99. https://www.cell.com/cell-metabolism/fulltext/S1550-4131(15)00224-7.
Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat Commun 2020, 11:3083. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311547.
Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer’s models. Cell Rep 2022, 40:111417. https://pubmed.ncbi.nlm.nih.gov/36170815.
Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med 2017, 9. https://pubmed.ncbi.nlm.nih.gov/28202779.
Stem cell mTOR signaling directs region-specific cell fate decisions during intestinal nutrient adaptation. Science Advances, 2024; 10 (6) DOI: 10.1126/sciadv.adi2671.
AGA Clinical Practice Guideline on Fecal Microbiota-Based Therapies for Select Gastrointestinal Diseases. Gastroenterology 2024, 166:409-434. https://pubmed.ncbi.nlm.nih.gov/38395525.
Newest updates to health providers on the hazards of ultra-processed foods and proposed solutions. The American Journal of Medicine 2024; DOI: 10.1016/j.amjmed.2024.02.001.
Blood–brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment. Nature Neuroscience 2024. https://doi.org/10.1038/s41593-024-01576-9.
INFLAMMATION
Mitochondrial DNA replication stress triggers a pro-inflammatory endosomal pathway of nucleoid disposal. Nature Cell Biology, 2024; DOI: 10.1038/s41556-023-01343-1.
Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis. Nature 2023, 614, 767–773: https://doi.org/10.1038/s41586-023-05710-8.
Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 2019, 565, 659–663: https://doi.org/10.1038/s41586-019-0885-0.
Ultra-processed and fast food consumption, exposure to phthalates during pregnancy, and socioeconomic disparities in phthalate exposures. Environment International 2024; 183: 108427. DOI: 10.1016/j.envint.2024.108427.
Multi-omics analysis reveals the associations between altered gut microbiota, metabolites, and cytokines during pregnancy. mSystems, 2024. DOI: 10.1128/msystems.01252-23.
Arachidonic acid inhibition of the NLRP3 inflammasome is a mechanism to explain the anti-inflammatory effects of fasting. Cell Reports 2024; 43 (2): 113700. DOI: 10.1016/j.celrep.2024.113700.
Efficacy of Indigo Naturalis Therapy for Ulcerative Colitis: A Case Series. Intern Med 2019, 58:2299-2304. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746630.
Protective role of saffron to reduce inflammation and improve clinical manifestations in ulcerative colitis patients. Inflammatory Bowel Diseases 2024, 30:S00-S00. https://doi.org/10.1093/ibd/izae020.021.
Viral afterlife: SARS-CoV-2 as a reservoir of immunomimetic peptides that reassemble into proinflammatory supramolecular complexes. PNAS 2024, 121 (6) e2300644120: https://doi.org/10.1073/pnas.230064412.
Antioxidant Enzyme Therapeutic for COVID-19. Advanced Materials 2020, 32:2004901. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202004901.
Dr CHANDLER MARRS
1. “Concurrent Training for the Powerlifter, Part 2: Physiology & Application”, by Cody Haun and Brandon Roberts, https://www.strongerbyscience.com/concurrent-training-part-2.
2. Effects of skeletal muscle energy availability on protein turnover responses to exercise. J Exp Biol 2016, 219:214-225. https://pubmed.ncbi.nlm.nih.gov/26792333.
3. Using molecular biology to maximize concurrent training. Sports Med 2014, 44 Suppl 2:S117-125. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213370.
4. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 1973, 39:545-565. https://doi.org/10.1007/BF02578899.
5. “Mitochondrial Energy, Not Genetics, Underlies Health and Disease”, by Chandler Marrs, PhD, Nov 10, 2022: https://www.hormonesmatter.com/mitochondria-energy-not-genetics-underlies-health-disease.
6. “Listening to Patients – a New Opportunity for Medical Science”, by by Chandler Marrs, PhD, August 10, 2015: https://www.hormonesmatter.com/listening-to-patients-a-new-opportunity-for-medical-science.
7. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci 2011, 29 Suppl 1: S29-38. https://pubmed.ncbi.nlm.nih.gov/22150425.
8. Nutritional interventions for cancer-induced cachexia. Curr Probl Cancer 2011, 35:58-90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3106221.
9. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Research Reviews 2017, 36:1-10. https://www.sciencedirect.com/science/article/pii/S1568163716302719.
10. Mechanical Signaling in the Pathophysiology of Critical Illness Myopathy. Frontiers in Physiology 2016, 7: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2016.00023.
11. Resistance exercise and nutrition to counteract muscle wasting. Appl Physiol Nutr Metab 2009, 34:817-828. https://pubmed.ncbi.nlm.nih.gov/19935843.
12. “The Brain Needs Protein, Say What?” By Chandler Marrs, PhD, August 22, 2023: https://www.hormonesmatter.com/brain-needs-protein-say-what.
Case report
- Thiamine and diabetes: back to the future? Acta Diabetol 2021, 58:1433-1439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505293.
- High-dose thiamine supplementation improves glucose tolerance in hyperglycemic individuals: a randomized, double-blind cross-over trial. Eur J Nutr 2013, 52:1821-1824. https://pubmed.ncbi.nlm.nih.gov/23715873.
3. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: Potential role in Sjögren’s syndrome. Autoimmunity Reviews 2021, 20:102867. https://www.sciencedirect.com/science/article/pii/S1568997221001397.
4. Mitochondria, endothelial cell function, and vascular diseases. Frontiers in Physiology 2014, 5. https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2014.00175.
Huntington disease oligodendrocyte maturation deficits revealed by single-nucleus RNAseq are rescued by thiamine-biotin supplementation. Nature Communications 2022, 13:7791. https://doi.org/10.1038/s41467-022-35388-x.
RESEARCH UPDATE
Defining “low-carb” in the scientific literature: A scoping review of clinical studies. Crit Rev Food Sci Nutr 2024:1-10. https://pubmed.ncbi.nlm.nih.gov/38189653.
Arachidonic acid: Physiological roles and potential health benefits – A review. J Adv Res 2018, 11:33-41. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052655.
Sex Differences in Association of Physical Activity With All-Cause and Cardiovascular Mortality. Journal of the American College of Cardiology 2024; 83 (8): 783 DOI: 10.1016/j.jacc.2023.12.019.
The associations between digit ratio (2D:4D and right – left 2D:4D), maximal oxygen consumption and ventilatory thresholds in professional male football players. American Journal of Human Biology 2024, doi: 10.1002/ajhb.24047.
A dairy-based protein-rich breakfast enhances satiety and cognitive concentration before lunch in young females with overweight to obesity: A randomized controlled cross-over study. Journal of Dairy Science 2023: https://www.sciencedirect.com/science/article/pii/S0022030223020143.
Type 2 diabetes impairs annulus fibrosus fiber deformation and rotation under disc compression in the University of California Davis type 2 diabetes mellitus (UCD-T2DM) rat model. PNAS Nexus 2023; 2 (12). https://academic.oup.com/pnasnexus/article/2/12/pgad363/7342234.
Type 2–polarized memory B cells hold allergen-specific IgE memory. Science Translational Medicine 2024; 16 (733). https://www.science.org/doi/10.1126/scitranslmed.adi0944.
Frailty before and during austerity: A time series analysis of the English Longitudinal Study of Ageing 2002–2018. PLOS ONE, 2024; 19 (2): e0296014. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296014.
February 2024
WELCOME/editor’s note
- Elevated genetic risk for multiple sclerosis emerged in steppe pastoralist populations. Nature 2024, 625 (7994): 321. DOI: 10.1038/s41586-023-06618-z.
2. Applying an evolutionary mismatch framework to understand disease susceptibility. PLoS Biol 2023, Sept 11, 21:e3002311. https://pubmed.ncbi.nlm.nih.gov/37695771.
3. Influence of a 10-Day Mimic of Our Ancient Lifestyle on Anthropometrics and Parameters of Metabolism and Inflammation: The “Study of Origin”. Biomed Res Int 2016, 2016:6935123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913061.
NEWS
Effect of multivitamin-mineral supplementation versus placebo on cognitive function: results from the clinic subcohort of the COcoa Supplement and Multivitamin Outcomes Study (COSMOS) randomized clinical trial and meta-analysis of 3 cognitive studies with. American Journal of Clinical Nutrition 2024. DOI: 10.1016/j.ajcnut.2023.12.011.
Oral nitrate supplementation improves cardiovascular risk markers in COPD: ON-BC a randomised controlled trial. European Respiratory Journal 2023: 2202353. http://erj.ersjournals.com/content/early/2024/01/08/13993003.02353-2022.abstract.
Influence of Seasonality and Public-Health Interventions on the COVID-19 Pandemic in Northern Europe. Journal of Clinical Medicine 2024, 13(2), 334: https://doi.org/10.3390/jcm13020334.
Ketogenic diet therapy for pediatric epilepsy is associated with alterations in the human gut microbiome that confer seizure resistance in mice. Cell Rep 2023, 42:113521. https://pubmed.ncbi.nlm.nih.gov/38070135.
Cancer statistics, 2024. CA: A Cancer Journal for Clinicians 2024, 74:12-49. https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21820. Estimated numbers of new cancer cases and deaths for this year are from Cancer Statistics, 2024, published in the American Cancer Society’s flagship journal CA: A Cancer Journal for Clinicians, in its consumer-friendly companion report, Cancer Facts & Figures 2024, and on the interactive website, the Cancer Statistics Center.
Semen microbiota are dramatically altered in men with abnormal sperm parameters. Scientific Reports, 2024; 14 (1) DOI: 10.1038/s41598-024-51686-4.
Dietary protein intake in midlife in relation to healthy aging – results from the prospective Nurses’ Health Study cohort. American Journal of Clinical Nutrition 2024, online Jan 17: https://doi.org/10.1016/j.ajcnut.2023.11.010.
NEWS extra
Global incidence and mortality of severe fungal disease. Lancet Infect Dis 2024, Jan 12: https://pubmed.ncbi.nlm.nih.gov/38224705.
“NHS doesn’t recommend vitamin A”: https://www.nhs.uk/conditions/measles.
CDC recommendations: https://www.cdc.gov/measles/hcp/index.html.
Vitamin A deficiency extremely rare: “Vitamin A: migrant health guide”: https://www.gov.uk/guidance/vitamin-a-deficiency-migrant-health-guide.
Cochrane summary: “Vitamin A reduces the risk of death from measles by 87% for children younger than 2 years”. https://methods.cochrane.org/equity/vitamin-measles.
BRAIN HEALTH
“Scientists discover there’s FIVE types of Alzheimer’s and are hopeful breakthrough could lead to cure”, Daily Mail, January 9: https://www.dailymail.co.uk/health/article-12941981/Scientists-discover-theres-FIVE-types-Alzheimers-hopeful-breakthrough-lead-cure.html.
Metabolic profiling distinguishes three subtypes of Alzheimer’s disease. Aging (Albany NY) 2015, 7:595-600: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586104.
Reversal of cognitive decline: A novel therapeutic program. Aging (Albany NY) 2014;6:707–17. doi: 10.18632/aging.100690: https://pubmed.ncbi.nlm.nih.gov/25324467.
Reversal of cognitive decline in Alzheimer’s disease. Aging (Albany NY) 2016, 8:1250-1258: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931830/#R3.
NUTRIENTS and the BRAIN
References for Quan Z, Li H, Quan Z, Qing H. Appropriate Macronutrients or Mineral Elements Are Beneficial to Improve Depression and Reduce the Risk of Depression. International Journal of Molecular Sciences 2023, 24(8):7098. https://doi.org/10.3390/ijms24087098.
- World Health Organization. Depression. Available online: http://www.who.int/mediacentre/factsheets/fs369/en/(accessed on 1 May 2021).
- Mrazek, D.A.; Hornberger, J.C.; Altar, C.A.; Degtiar, I. A review of the clinical, economic, and societal burden of treatment-resistant depression: 1996–2013. Psychiatr. Serv. 2014, 65, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Hamon, M.; Blier, P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 45, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, Z.-Y. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol. Sin. 2011, 32, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Dwyer, J.B.; Aftab, A.; Radhakrishnan, R.; Widge, A.; Rodriguez, C.I.; Carpenter, L.L.; Nemeroff, C.B.; McDonald, W.M.; Kalin, N.H. Hormonal Treatments for Major Depressive Disorder: State of the Art. Am. J. Psychiatry 2020, 177, 686–705. [Google Scholar] [CrossRef]
- Aly, J.; Engmann, O. The Way to a Human’s Brain Goes Through Their Stomach: Dietary Factors in Major Depressive Disorder. Front. Neurosci. 2020, 14, 582853. [Google Scholar] [CrossRef] [PubMed]
- Shayganfard, M. Are Essential Trace Elements Effective in Modulation of Mental Disorders? Update and Perspectives. Biol. Trace Elem. Res. 2022, 200, 1032–1059. [Google Scholar] [CrossRef]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Park, Y.; Freedman, N.D.; Sinha, R.; Hollenbeck, A.R.; Blair, A.; Chen, H. Sweetened beverages, coffee, and tea and depression risk among older US adults. PLoS ONE 2014, 9, e94715. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, E.; Stronks, K.; Snijder, M.B.; Schene, A.H.; Lok, A.; de Vries, J.H.; Visser, M.; Brouwer, I.A.; Nicolaou, M. A combined high-sugar and high-saturated-fat dietary pattern is associated with more depressive symptoms in a multi-ethnic population: The HELIUS (Healthy Life in an Urban Setting) study. Public Health Nutr. 2017, 20, 2374–2382. [Google Scholar] [CrossRef] [Green Version]
- Shimmura, N.; Nanri, A.; Kashino, I.; Kochi, T.; Eguchi, M.; Kabe, I.; Mizoue, T. Prospective association of confectionery intake with depressive symptoms among Japanese workers: The Furukawa Nutrition and Health Study. Br. J. Nutr. 2022, 128, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Kashino, I.; Kochi, T.; Imamura, F.; Eguchi, M.; Kuwahara, K.; Nanri, A.; Kurotani, K.; Akter, S.; Hu, H.; Miki, T.; et al. Prospective association of soft drink consumption with depressive symptoms. Nutrition 2021, 81, 110860. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Cheng, L.; Jiang, W. Sugar-sweetened beverages consumption and the risk of depression: A meta-analysis of observational studies. J. Affect. Disord. 2019, 245, 348–355. [Google Scholar] [CrossRef]
- Yu, B.; He, H.; Zhang, Q.; Wu, H.; Du, H.; Liu, L.; Wang, C.; Shi, H.; Xia, Y.; Guo, X.; et al. Soft drink consumption is associated with depressive symptoms among adults in China. J. Affect. Disord. 2015, 172, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, X.; Xiao, Y.; Jing, D.; Huang, Y.; Chen, L.; Luo, D.; Chen, X.; Shen, M. Daily intake of soft drinks is associated with symptoms of anxiety and depression in Chinese adolescents. Public Health Nutr. 2019, 22, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Villegas, A.; Zazpe, I.; Santiago, S.; Perez-Cornago, A.; Martinez-Gonzalez, M.A.; Lahortiga-Ramos, F. Added sugars and sugar-sweetened beverage consumption, dietary carbohydrate index and depression risk in the Seguimiento Universidad de Navarra (SUN) Project. Br. J. Nutr. 2018, 119, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-M.; Lee, E. Association between Soft-Drink Intake and Obesity, Depression, and Subjective Health Status of Male and Female Adults. Int. J. Environ. Res. Public Health 2021, 18, 10415. [Google Scholar] [CrossRef]
- Pinna, F.; Suprani, F.; Deiana, V.; Lai, L.; Manchia, M.; Paribello, P.; Somaini, G.; Diana, E.; Nicotra, E.F.; Farci, F.; et al. Depression in Diabetic Patients: What Is the Link With Eating Disorders? Results of a Study in a Representative Sample of Patients With Type 1 Diabetes. Front. Psychiatry 2022, 13, 848031. [Google Scholar] [CrossRef]
- Borgland, S.L. Can treatment of obesity reduce depression or vice versa? J. Psychiatry Neurosci. 2021, 46, E313–E318. [Google Scholar] [CrossRef]
- Peng, Y.-F.; Xiang, Y.; Wei, Y.-S. The significance of routine biochemical markers in patients with major depressive disorder. Sci. Rep. 2016, 6, 34402. [Google Scholar] [CrossRef] [Green Version]
- Inam, Q.-u.-A.; Jabeen, B.; Haleem, M.A.; Haleem, D.J. Long-term consumption of sugar-rich diet decreases the effectiveness of somatodendritic serotonin-1A receptors. Nutr. Neurosci. 2008, 11, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Haase, J.; Brown, E. Integrating the monoamine, neurotrophin and cytokine hypotheses of depression—A central role for the serotonin transporter? Pharmacol. Ther. 2015, 147, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Köhler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand. 2017, 135, 373–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabedra Sousa, F.S.; Birmann, P.T.; Bampi, S.R.; Fronza, M.G.; Balaguez, R.; Alves, D.; Leite, M.R.; Nogueira, C.W.; Brüning, C.A.; Savegnago, L. Lipopolysaccharide-induced depressive-like, anxiogenic-like and hyperalgesic behavior is attenuated by acute administration of α-(phenylselanyl) acetophenone in mice. Neuropharmacology 2019, 146, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Casaril, A.M.; Domingues, M.; de Andrade Lourenço, D.; Birmann, P.T.; Padilha, N.; Vieira, B.; Begnini, K.; Seixas, F.K.; Collares, T.; Lenardão, E.J.; et al. Depression- and anxiogenic-like behaviors induced by lipopolysaccharide in mice are reversed by a selenium-containing indolyl compound: Behavioral, neurochemical and computational insights involving the serotonergic system. J. Psychiatr. Res. 2019, 115, 1–12. [Google Scholar] [CrossRef]
- Do, M.H.; Lee, E.; Oh, M.-J.; Kim, Y.; Park, H.-Y. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients 2018, 10, 761. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Duman, R.; Sanacora, G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Meta-analyses and implications. Biol. Psychiatry 2008, 64, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.K.; Lee, H.P.; Won, S.D.; Park, E.Y.; Lee, H.Y.; Lee, B.H.; Lee, S.W.; Yoon, D.; Han, C.; Kim, D.J.; et al. Low plasma BDNF is associated with suicidal behavior in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 78–85. [Google Scholar] [CrossRef]
- Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21, 7777. [Google Scholar] [CrossRef]
- Björkholm, C.; Monteggia, L.M. BDNF—A key transducer of antidepressant effects. Neuropharmacology 2016, 102, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Molteni, R.; Barnard, R.J.; Ying, Z.; Roberts, C.K.; Gómez-Pinilla, F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 2002, 112, 803–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo-Ochoa, E.; Hernández-Ortega, K.; Ferrera, P.; Morimoto, S.; Arias, C. Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus. J. Cereb. Blood Flow Metab. 2014, 34, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Speed, M.S.; Jefsen, O.H.; Børglum, A.D.; Speed, D.; Østergaard, S.D. Investigating the association between body fat and depression via Mendelian randomization. Transl. Psychiatry 2019, 9, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannan, M.; Mamun, A.; Doi, S.; Clavarino, A. Is there a bi-directional relationship between depression and obesity among adult men and women? Systematic review and bias-adjusted meta analysis. Asian J. Psychiatry 2016, 21, 51–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannan, M.; Mamun, A.; Doi, S.; Clavarino, A. Prospective Associations between Depression and Obesity for Adolescent Males and Females—A Systematic Review and Meta-Analysis of Longitudinal Studies. PLoS ONE 2016, 11, e0157240. [Google Scholar] [CrossRef] [Green Version]
- Panth, N.; Dias, C.B.; Wynne, K.; Singh, H.; Garg, M.L. Medium-chain fatty acids lower postprandial lipemia: A randomized crossover trial. Clin. Nutr. 2020, 39, 90–96. [Google Scholar] [CrossRef]
- Oh, J.; Kim, T.-S. Serum lipid levels in depression and suicidality: The Korea National Health and Nutrition Examination Survey (KNHANES) 2014. J. Affect. Disord. 2017, 213, 51–58. [Google Scholar] [CrossRef]
- Enko, D.; Brandmayr, W.; Halwachs-Baumann, G.; Schnedl, W.J.; Meinitzer, A.; Kriegshäuser, G. Prospective plasma lipid profiling in individuals with and without depression. Lipids Health Dis. 2018, 17, 149. [Google Scholar] [CrossRef] [Green Version]
- So, H.-C.; Chau, C.K.-L.; Cheng, Y.-Y.; Sham, P.C. Causal relationships between blood lipids and depression phenotypes: A Mendelian randomisation analysis. Psychol. Med. 2021, 51, 2357–2369. [Google Scholar] [CrossRef]
- Braga, S.P.; Delanogare, E.; Machado, A.E.; Prediger, R.D.; Moreira, E.L.G. Switching from high-fat feeding (HFD) to regular diet improves metabolic and behavioral impairments in middle-aged female mice. Behav. Brain Res. 2021, 398, 112969. [Google Scholar] [CrossRef]
- Yu, H.; Qin, X.; Yu, Z.; Chen, Y.; Tang, L.; Shan, W. Effects of high-fat diet on the formation of depressive-like behavior in mice. Food Funct. 2021, 12, 6416–6431. [Google Scholar] [CrossRef] [PubMed]
- Abildgaard, A.; Solskov, L.; Volke, V.; Harvey, B.H.; Lund, S.; Wegener, G. A high-fat diet exacerbates depressive-like behavior in the Flinders Sensitive Line (FSL) rat, a genetic model of depression. Psychoneuroendocrinology 2011, 36, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Mikami, T.; Kim, J.; Park, J.; Lee, H.; Yaicharoen, P.; Suidasari, S.; Yokozawa, M.; Yamauchi, K. Olive leaf extract prevents obesity, cognitive decline, and depression and improves exercise capacity in mice. Sci. Rep. 2021, 11, 12495. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lv, W.; Pan, Q.; Kalavagunta, P.K.; Liu, Q.; Qin, G.; Cai, M.; Zhou, L.; Wang, T.; Xia, Z.; et al. Simvastatin therapy in adolescent mice attenuates HFD-induced depression-like behavior by reducing hippocampal neuroinflammation. J. Affect. Disord. 2019, 243, 83–95. [Google Scholar] [CrossRef]
- Hersey, M.; Woodruff, J.L.; Maxwell, N.; Sadek, A.T.; Bykalo, M.K.; Bain, I.; Grillo, C.A.; Piroli, G.G.; Hashemi, P.; Reagan, L.P. High-fat diet induces neuroinflammation and reduces the serotonergic response to escitalopram in the hippocampus of obese rats. Brain Behav. Immun. 2021, 96, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Liu, Q.; Wan, R.; Kalavagunta, P.K.; Liu, L.; Lv, W.; Qiao, T.; Shang, J.; Wu, H. Selective inhibition of intestinal 5-HT improves neurobehavioral abnormalities caused by high-fat diet mice. Metab. Brain Dis. 2019, 34, 747–761. [Google Scholar] [CrossRef]
- Liu, S.; Xiu, J.; Zhu, C.; Meng, K.; Li, C.; Han, R.; Du, T.; Li, L.; Xu, L.; Liu, R.; et al. Fat mass and obesity-associated protein regulates RNA methylation associated with depression-like behavior in mice. Nat. Commun. 2021, 12, 6937. [Google Scholar] [CrossRef]
- Xia, G.; Han, Y.; Meng, F.; He, Y.; Srisai, D.; Farias, M.; Dang, M.; Palmiter, R.D.; Xu, Y.; Wu, Q. Reciprocal control of obesity and anxiety-depressive disorder via a GABA and serotonin neural circuit. Mol. Psychiatry 2021, 26, 2837–2853. [Google Scholar] [CrossRef]
- Tsai, S.-F.; Hsu, P.-L.; Chen, Y.-W.; Hossain, M.S.; Chen, P.-C.; Tzeng, S.-F.; Chen, P.-S.; Kuo, Y.-M. High-fat diet induces depression-like phenotype via astrocyte-mediated hyperactivation of ventral hippocampal glutamatergic afferents to the nucleus accumbens. Mol. Psychiatry 2022, 27, 4372–4384. [Google Scholar] [CrossRef]
- Rebai, R.; Jasmin, L.; Boudah, A. Agomelatine effects on fat-enriched diet induced neuroinflammation and depression-like behavior in rats. Biomed. Pharmacother. Biomed. Pharmacother. 2021, 135, 111246. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhou, J.; Liu, Q.Z.; Wang, L.L.; Shang, J. Simvastatin and Bezafibrate ameliorate Emotional disorder Induced by High fat diet in C57BL/6 mice. Sci. Rep. 2017, 7, 2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcego, D.M.; Toniazzo, A.P.; Krolow, R.; Lampert, C.; Berlitz, C.; Dos Santos Garcia, E.; do Couto Nicola, F.; Hoppe, J.B.; Gaelzer, M.M.; Klein, C.P.; et al. Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats. Mol. Neurobiol. 2018, 55, 2740–2753. [Google Scholar] [CrossRef] [PubMed]
- Vagena, E.; Ryu, J.K.; Baeza-Raja, B.; Walsh, N.M.; Syme, C.; Day, J.P.; Houslay, M.D.; Baillie, G.S. A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl. Psychiatry 2019, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cheng, Y.; Zhou, Y.; Du, H.; Zhang, C.; Zhao, Z.; Chen, Y.; Zhou, Z.; Mei, J.; Wu, W.; et al. High fat diet-induced obesity leads to depressive and anxiety-like behaviors in mice via AMPK/mTOR-mediated autophagy. Exp. Neurol. 2022, 348, 113949. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, J.; Xia, J.; Xue, X.; Wang, H.; Qi, Z.; Ji, L. Leptin receptor knockout-induced depression-like behaviors and attenuated antidepressant effects of exercise are associated with STAT3/SOCS3 signaling. Brain Behav. Immun. 2017, 61, 297–305. [Google Scholar] [CrossRef]
- Guo, M.; Huang, T.-Y.; Garza, J.C.; Chua, S.C.; Lu, X.-Y. Selective deletion of leptin receptors in adult hippocampus induces depression-related behaviours. Int. J. Neuropsychopharmacol. 2013, 16, 857–867. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.L.; Liu, D.X.; Jiang, H.; Pan, F.; Ho, C.S.; Ho, R.C. The Effects of High-fat-diet Combined with Chronic Unpredictable Mild Stress on Depression-like Behavior and Leptin/LepRb in Male Rats. Sci. Rep. 2016, 6, 35239. [Google Scholar] [CrossRef] [Green Version]
- Gallego-Landin, I.; García-Baos, A.; Castro-Zavala, A.; Valverde, O. Reviewing the Role of the Endocannabinoid System in the Pathophysiology of Depression. Front. Pharm. 2021, 12, 762738. [Google Scholar] [CrossRef]
- Valverde, O.; Torrens, M. CB1 receptor-deficient mice as a model for depression. Neuroscience 2012, 204, 193–206. [Google Scholar] [CrossRef]
- Gawliński, D.; Gawlińska, K.; Smaga, I. Maternal High-Fat Diet Modulates Gene Expression in Male Rat Offspring. Nutrients 2021, 13, 2885. [Google Scholar] [CrossRef]
- Oh, J.; Yun, K.; Chae, J.-H.; Kim, T.-S. Association Between Macronutrients Intake and Depression in the United States and South Korea. Front. Psychiatry 2020, 11, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, A.R.; Arroyo, C.; Tedders, S.H.; Li, Y.; Dai, Q.; Zhang, J. Dietary protein and protein-rich food in relation to severely depressed mood: A 10 year follow-up of a national cohort. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, C.; Li, S.; Zhang, D. Association between dietary protein intake and the risk of depressive symptoms in adults. Br. J. Nutr. 2020, 123, 1290–1301. [Google Scholar] [CrossRef] [PubMed]
- Nanri, A.; Eguchi, M.; Kuwahara, K.; Kochi, T.; Kurotani, K.; Ito, R.; Pham, N.M.; Tsuruoka, H.; Akter, S.; Jacka, F.; et al. Macronutrient intake and depressive symptoms among Japanese male workers: The Furukawa Nutrition and Health Study. Psychiatry Res. 2014, 220, 263–268. [Google Scholar] [CrossRef]
- Nucci, D.; Fatigoni, C.; Amerio, A.; Odone, A.; Gianfredi, V. Red and Processed Meat Consumption and Risk of Depression: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 6686. [Google Scholar] [CrossRef]
- Ciarambino, T.; Ferrara, N.; Castellino, P.; Paolisso, G.; Coppola, L.; Giordano, M. Effects of a 6-days-a-week low protein diet regimen on depressive symptoms in young-old type 2 diabetic patients. Nutrition 2011, 27, 46–49. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Zhang, D. Associations of different types of dairy intakes with depressive symptoms in adults. J. Affect. Disord. 2020, 274, 326–333. [Google Scholar] [CrossRef]
- Badawy, A.A. B. Tryptophan: The key to boosting brain serotonin synthesis in depressive illness. J. Psychopharmacol. 2013, 27, 878–893. [Google Scholar] [CrossRef]
- Reuter, M.; Zamoscik, V.; Plieger, T.; Bravo, R.; Ugartemendia, L.; Rodriguez, A.B.; Kirsch, P. Tryptophan-rich diet is negatively associated with depression and positively linked to social cognition. Nutr. Res. 2021, 85, 14–20. [Google Scholar] [CrossRef]
- Franklin, M.; Bermudez, I.; Murck, H.; Singewald, N.; Gaburro, S. Sub-chronic dietary tryptophan depletion—An animal model of depression with improved face and good construct validity. J. Psychiatr. Res. 2012, 46, 239–247. [Google Scholar] [CrossRef]
- Papakostas, G.I. Dopaminergic-based pharmacotherapies for depression. Eur. Neuropsychopharmacol. 2006, 16, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Vekovischeva, O.Y.; Peuhkuri, K.; Bäckström, P.; Sihvola, N.; Pilvi, T.; Korpela, R. The effects of native whey and α-lactalbumin on the social and individual behaviour of C57BL/6J mice. Br. J. Nutr. 2013, 110, 1336–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, T.; Matsunaga, K.; Sugiyama, A. Antidepressant-like effect of milk-derived lactoferrin in the repeated forced-swim stress mouse model. J. Vet. Med. Sci. 2017, 79, 1803–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szewczyk, B.; Kubera, M.; Nowak, G. The role of zinc in neurodegenerative inflammatory pathways in depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, W.; Xin, X.; Song, X.; Zhang, D. Association of total zinc, iron, copper and selenium intakes with depression in the US adults. J. Affect. Disord. 2018, 228, 68–74. [Google Scholar] [CrossRef]
- Vashum, K.P.; McEvoy, M.; Milton, A.H.; McElduff, P.; Hure, A.; Byles, J.; Attia, J. Dietary zinc is associated with a lower incidence of depression: Findings from two Australian cohorts. J. Affect. Disord. 2014, 166, 249–257. [Google Scholar] [CrossRef]
- Anbari-Nogyni, Z.; Bidaki, R.; Madadizadeh, F.; Sangsefidi, Z.S.; Fallahzadeh, H.; Karimi-Nazari, E.; Nadjarzadeh, A. Relationship of zinc status with depression and anxiety among elderly population. Clin. Nutr. ESPEN 2020, 37, 233–239. [Google Scholar] [CrossRef]
- Nakamura, M.; Miura, A.; Nagahata, T.; Shibata, Y.; Okada, E.; Ojima, T. Low Zinc, Copper, and Manganese Intake is Associated with Depression and Anxiety Symptoms in the Japanese Working Population: Findings from the Eating Habit and Well-Being Study. Nutrients 2019, 11, 847. [Google Scholar] [CrossRef] [Green Version]
- Miki, T.; Kochi, T.; Eguchi, M.; Kuwahara, K.; Tsuruoka, H.; Kurotani, K.; Ito, R.; Akter, S.; Kashino, I.; Pham, N.M.; et al. Dietary intake of minerals in relation to depressive symptoms in Japanese employees: The Furukawa Nutrition and Health Study. Nutrition 2015, 31, 686–690. [Google Scholar] [CrossRef]
- Maserejian, N.N.; Hall, S.A.; McKinlay, J.B. Low dietary or supplemental zinc is associated with depression symptoms among women, but not men, in a population-based epidemiological survey. J. Affect. Disord. 2012, 136, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Thi Thu Nguyen, T.; Miyagi, S.; Tsujiguchi, H.; Kambayashi, Y.; Hara, A.; Nakamura, H.; Suzuki, K.; Yamada, Y.; Shimizu, Y.; Nakamura, H. Association between Lower Intake of Minerals and Depressive Symptoms among Elderly Japanese Women but Not Men: Findings from Shika Study. Nutrients 2019, 11, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Fartusie, F.S.; Al-Bairmani, H.K.; Al-Garawi, Z.S.; Yousif, A.H. Evaluation of Some Trace Elements and Vitamins in Major Depressive Disorder Patients: A Case-Control Study. Biol. Trace Elem. Res. 2019, 189, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Islam, M.R.; Shalahuddin Qusar, M.M.A.; Islam, M.S.; Kabir, M.H.; Mustafizur Rahman, G.K.M.; Islam, M.S.; Hasnat, A. Alterations of serum macro-minerals and trace elements are associated with major depressive disorder: A case-control study. BMC Psychiatry 2018, 18, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittle, N.; Lubec, G.; Singewald, N. Zinc deficiency induces enhanced depression-like behaviour and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids 2009, 36, 147–158. [Google Scholar] [CrossRef]
- Tassabehji, N.M.; Corniola, R.S.; Alshingiti, A.; Levenson, C.W. Zinc deficiency induces depression-like symptoms in adult rats. Physiol. Behav. 2008, 95, 365–369. [Google Scholar] [CrossRef]
- Młyniec, K.; Nowak, G. Zinc deficiency induces behavioral alterations in the tail suspension test in mice. Effect of antidepressants. Pharmacol. Rep. PR 2012, 64, 249–255. [Google Scholar] [CrossRef]
- Thingholm, T.E.; Rönnstrand, L.; Rosenberg, P.A. Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Cell Mol. Life Sci. 2020, 77, 3085–3102. [Google Scholar] [CrossRef] [Green Version]
- Rafalo-Ulinska, A.; Piotrowska, J.; Kryczyk, A.; Opoka, W.; Sowa-Kucma, M.; Misztak, P.; Rajkowska, G.; Stockmeier, C.A.; Datka, W.; Nowak, G.; et al. Zinc transporters protein level in postmortem brain of depressed subjects and suicide victims. J. Psychiatr. Res. 2016, 83, 220–229. [Google Scholar] [CrossRef] [Green Version]
- McAllister, B.B.; Dyck, R.H. Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci. Biobehav. Rev. 2017, 80, 329–350. [Google Scholar] [CrossRef]
- Dou, X.; Tian, X.; Zheng, Y.; Huang, J.; Shen, Z.; Li, H.; Wang, X.; Mo, F.; Wang, W.; Wang, S.; et al. Psychological stress induced hippocampus zinc dyshomeostasis and depression-like behavior in rats. Behav. Brain Res. 2014, 273, 133–138. [Google Scholar] [CrossRef]
- Suh, S.W.; Won, S.J.; Hamby, A.M.; Yoo, B.H.; Fan, Y.; Sheline, C.T.; Tamano, H.; Takeda, A.; Liu, J. Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J. Cereb. Blood Flow Metab. 2009, 29, 1579–1588. [Google Scholar] [CrossRef] [Green Version]
- Laitakari, A.; Liu, L.; Frimurer, T.M.; Holst, B. The Zinc-Sensing Receptor GPR39 in Physiology and as a Pharmacological Target. Int. J. Mol. Sci. 2021, 22, 3872. [Google Scholar] [CrossRef] [PubMed]
- Siodłak, D.; Nowak, G.; Mlyniec, K. Interaction between zinc, the GPR39 zinc receptor and the serotonergic system in depression. Brain Res. Bull. 2021, 170, 146–154. [Google Scholar] [CrossRef]
- Młyniec, K.; Gaweł, M.; Nowak, G. Study of antidepressant drugs in GPR39 (zinc receptor−/−) knockout mice, showing no effect of conventional antidepressants, but effectiveness of NMDA antagonists. Behav. Brain Res. 2015, 287, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Młyniec, K.; Budziszewska, B.; Holst, B.; Ostachowicz, B.; Nowak, G. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus. Int. J. Neuropsychopharmacol. 2014, 18, pyu002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mlyniec, K. Interaction between Zinc, GPR39, BDNF and Neuropeptides in Depression. Curr. Neuropharmacol. 2021, 19, 2012–2019. [Google Scholar] [CrossRef] [PubMed]
- Doboszewska, U.; Szewczyk, B.; Sowa-Kućma, M.; Noworyta-Sokołowska, K.; Misztak, P.; Gołębiowska, J.; Młyniec, K.; Ostachowicz, B.; Krośniak, M.; Wojtanowska-Krośniak, A.; et al. Alterations of Bio-elements, Oxidative, and Inflammatory Status in the Zinc Deficiency Model in Rats. Neurotox. Res. 2016, 29, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirsten, T.B.; Cabral, D.; Galvão, M.C.; Monteiro, R.; Bondan, E.F.; Bernardi, M.M. Zinc, but not paracetamol, prevents depressive-like behavior and sickness behavior, and inhibits interferon-gamma and astrogliosis in rats. Brain Behav. Immun. 2020, 87, 489–497. [Google Scholar] [CrossRef]
- Doboszewska, U.; Szewczyk, B.; Sowa-Kućma, M.; Młyniec, K.; Rafało, A.; Ostachowicz, B.; Lankosz, M.; Nowak, G. Antidepressant activity of fluoxetine in the zinc deficiency model in rats involves the NMDA receptor complex. Behav. Brain Res. 2015, 287, 323–330. [Google Scholar] [CrossRef]
- Doboszewska, U.; Sowa-Kućma, M.; Młyniec, K.; Pochwat, B.; Hołuj, M.; Ostachowicz, B.; Pilc, A.; Nowak, G.; Szewczyk, B. Zinc deficiency in rats is associated with up-regulation of hippocampal NMDA receptor. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 56, 254–263. [Google Scholar] [CrossRef]
- Botturi, A.; Ciappolino, V.; Delvecchio, G.; Boscutti, A.; Viscardi, B.; Brambilla, P. The Role and the Effect of Magnesium in Mental Disorders: A Systematic Review. Nutrients 2020, 12, 1661. [Google Scholar] [CrossRef]
- Tarleton, E.K.; Kennedy, A.G.; Rose, G.L.; Crocker, A.; Littenberg, B. The Association between Serum Magnesium Levels and Depression in an Adult Primary Care Population. Nutrients 2019, 11, 1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Wang, R.; Li, Z.; Zhang, D. Dietary magnesium intake and risk of depression. J. Affect. Disord. 2019, 246, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lv, J.; Wang, W.; Zhang, D. Dietary magnesium and calcium intake and risk of depression in the general population: A meta-analysis. Aust. N. Z. J. Psychiatry 2017, 51, 219–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singewald, N.; Sinner, C.; Hetzenauer, A.; Sartori, S.B.; Murck, H. Magnesium-deficient diet alters depression- and anxiety-related behavior in mice—Influence of desipramine and Hypericum perforatum extract. Neuropharmacology 2004, 47, 1189–1197. [Google Scholar] [CrossRef]
- Winther, G.; Pyndt Jørgensen, B.M.; Elfving, B.; Nielsen, D.S.; Kihl, P.; Lund, S.; Sørensen, D.B.; Wegener, G. Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour. Acta Neuropsychiatr. 2015, 27, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Del Chierico, F.; Trapani, V.; Petito, V.; Reddel, S.; Pietropaolo, G.; Graziani, C.; Masi, L.; Gasbarrini, A.; Putignani, L.; Scaldaferri, F.; et al. Dietary Magnesium Alleviates Experimental Murine Colitis through Modulation of Gut Microbiota. Nutrients 2021, 13, 4188. [Google Scholar] [CrossRef]
- Ghafari, M.; Whittle, N.; Miklósi, A.G.; Kotlowski, C.; Kotlowsky, C.; Schmuckermair, C.; Berger, J.; Bennett, K.L.; Singewald, N.; Lubec, G. Dietary magnesium restriction reduces amygdala-hypothalamic GluN1 receptor complex levels in mice. Brain Struct. Funct. 2015, 220, 2209–2221. [Google Scholar] [CrossRef]
- Whittle, N.; Li, L.; Chen, W.-Q.; Yang, J.-W.; Sartori, S.B.; Lubec, G.; Singewald, N. Changes in brain protein expression are linked to magnesium restriction-induced depression-like behavior. Amino Acids 2011, 40, 1231–1248. [Google Scholar] [CrossRef]
- Opanković, A.; Milovanović, S.; Radosavljević, B.; Čavić, M.; Besu Žižak, I.; Bukumirić, Z.; Latas, M.; Medić, B.; Vučković, S.; Srebro, D.; et al. Correlation of Ionized Magnesium with the Parameters of Oxidative Stress as Potential Biomarkers in Patients with Anxiety and Depression: A Pilot Study. Dose Response 2022, 20, 15593258221116741. [Google Scholar] [CrossRef]
- Scheiber, I.F.; Mercer, J.F.B.; Dringen, R. Metabolism and functions of copper in brain. Prog. Neurobiol. 2014, 116, 33–57. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; You, Y.; Chen, J.; Zhang, L. Copper in depressive disorder: A systematic review and meta-analysis of observational studies. Psychiatry Res. 2018, 267, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Szkup, M.; Jurczak, A.; Brodowska, A.; Brodowska, A.; Noceń, I.; Chlubek, D.; Laszczyńska, M.; Karakiewicz, B.; Grochans, E. Analysis of Relations Between the Level of Mg, Zn, Ca, Cu, and Fe and Depressiveness in Postmenopausal Women. Biol. Trace Elem. Res. 2017, 176, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Styczeń, K.; Sowa-Kućma, M.; Siwek, M.; Dudek, D.; Reczyński, W.; Misztak, P.; Szewczyk, B.; Topór-Mądry, R.; Opoka, W.; Nowak, G. Study of the Serum Copper Levels in Patients with Major Depressive Disorder. Biol. Trace Elem. Res. 2016, 174, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; He, K.; Zhang, K.; Yang, C.; Nie, L.; Dan, D.; Liu, J.; Zhang, C.-E.; Yang, X. Low-Dose Copper Exposure Exacerbates Depression-Like Behavior in ApoE4 Transgenic Mice. Oxidative Med. Cell. Longev. 2021, 2021, 6634181. [Google Scholar] [CrossRef]
- Lamtai, M.; Zghari, O.; Azirar, S.; Ouakki, S.; Mesfioui, A.; El Hessni, A.; Berkiks, I.; Marmouzi, I.; Ouichou, A. Melatonin modulates copper-induced anxiety-like, depression-like and memory impairments by acting on hippocampal oxidative stress in rat. Drug Chem. Toxicol. 2021, 45, 1707–1715. [Google Scholar] [CrossRef]
- Liu, X.; Lin, C.; Wang, S.; Yu, X.; Jia, Y.; Chen, J. Effects of high levels of copper on the depression-related memory disorders. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 78, 611–618. [Google Scholar] [CrossRef]
- Barks, A.; Hall, A.M.; Tran, P.V.; Georgieff, M.K. Iron as a model nutrient for understanding the nutritional origins of neuropsychiatric disease. Pediatr. Res. 2019, 85, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, B.; Song, X.; Zhang, D. Dietary zinc and iron intake and risk of depression: A meta-analysis. Psychiatry Res. 2017, 251, 41–47. [Google Scholar] [CrossRef]
- Portugal-Nunes, C.; Castanho, T.C.; Amorim, L.; Moreira, P.S.; Mariz, J.; Marques, F.; Sousa, N.; Santos, N.C.; Palha, J.A. Iron Status is Associated with Mood, Cognition, and Functional Ability in Older Adults: A Cross-Sectional Study. Nutrients 2020, 12, 3594. [Google Scholar] [CrossRef]
- Hameed, S.; Naser, I.A.; Al Ghussein, M.A.; Ellulu, M.S. Is iron deficiency a risk factor for postpartum depression? A case-control study in the Gaza Strip, Palestine. Public Health Nutr. 2021, 25, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zheng, Z.; Ma, C. The effectiveness of iron supplementation for postpartum depression: A protocol for systematic review and meta-analysis. Medicine 2020, 99, e23603. [Google Scholar] [CrossRef] [PubMed]
- Hidese, S.; Saito, K.; Asano, S.; Kunugi, H. Association between iron-deficiency anemia and depression: A web-based Japanese investigation. Psychiatry Clin. Neurosci. 2018, 72, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Bergis, D.; Tessmer, L.; Badenhoop, K. Iron deficiency in long standing type 1 diabetes mellitus and its association with depression and impaired quality of life. Diabetes Res. Clin. Pract. 2019, 151, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Zhou, Y.; Li, Q.; Xu, J.; Yan, S.; Cai, J.; Jiaerken, Y.; Lou, M. Brain Iron Deposits in Thalamus Is an Independent Factor for Depressive Symptoms Based on Quantitative Susceptibility Mapping in an Older Adults Community Population. Front. Psychiatry 2019, 10, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharm. Rev. 2012, 64, 238–258. [Google Scholar] [CrossRef] [Green Version]
- Texel, S.J.; Camandola, S.; Ladenheim, B.; Rothman, S.M.; Mughal, M.R.; Unger, E.L.; Cadet, J.L.; Mattson, M.P. Ceruloplasmin deficiency results in an anxiety phenotype involving deficits in hippocampal iron, serotonin, and BDNF. J. Neurochem. 2012, 120, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Tran, P.V.; Carlson, E.S.; Fretham, S.J.B.; Georgieff, M.K. Early-life iron deficiency anemia alters neurotrophic factor expression and hippocampal neuron differentiation in male rats. J. Nutr. 2008, 138, 2495–2501. [Google Scholar] [CrossRef] [Green Version]
- Tran, P.V.; Fretham, S.J.B.; Carlson, E.S.; Georgieff, M.K. Long-term reduction of hippocampal brain-derived neurotrophic factor activity after fetal-neonatal iron deficiency in adult rats. Pediatr. Res. 2009, 65, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Mehrpouya, S.; Nahavandi, A.; Khojasteh, F.; Soleimani, M.; Ahmadi, M.; Barati, M. Iron administration prevents BDNF decrease and depressive-like behavior following chronic stress. Brain Res. 2015, 1596, 79–87. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, M.; Li, Y.; Li, Y.; Gong, H.; Li, J.; Zhang, Y.; Zhang, C.; Yan, F.; Sun, B.; et al. Alterations in brain iron deposition with progression of late-life depression measured by magnetic resonance imaging (MRI)-based quantitative susceptibility mapping. Quant. Imaging Med. Surg. 2022, 12, 3873–3888. [Google Scholar] [CrossRef] [PubMed]
- Youdim, M.B. H. Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases. J. Neural Transm. 2018, 125, 1719–1733. [Google Scholar] [CrossRef]
- Baldessarini, R.J.; Tondo, L.; Vázquez, G.H. Pharmacological treatment of adult bipolar disorder. Mol. Psychiatry 2019, 24, 198–217. [Google Scholar] [CrossRef] [PubMed]
- Barroilhet, S.A.; Ghaemi, S.N. When and how to use lithium. Acta Psychiatr. Scand. 2020, 142, 161–172. [Google Scholar] [CrossRef]
- Memon, A.; Rogers, I.; Fitzsimmons, S.M.D.D.; Carter, B.; Strawbridge, R.; Hidalgo-Mazzei, D.; Young, A.H. Association between naturally occurring lithium in drinking water and suicide rates: Systematic review and meta-analysis of ecological studies. Br. J. Psychiatry J. Ment. Sci. 2020, 217, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Birkenhäger, T.K.; van den Broek, W.W.; Mulder, P.G.; Bruijn, J.A.; Moleman, P. Comparison of two-phase treatment with imipramine or fluvoxamine, both followed by lithium addition, in inpatients with major depressive disorder. Am. J. Psychiatry 2004, 161, 2060–2065. [Google Scholar] [CrossRef]
- Taylor, R.W.; Marwood, L.; Oprea, E.; DeAngel, V.; Mather, S.; Valentini, B.; Zahn, R.; Young, A.H.; Cleare, A.J. Pharmacological Augmentation in Unipolar Depression: A Guide to the Guidelines. Int. J. Neuropsychopharmacol. 2020, 23, 587–625. [Google Scholar] [CrossRef] [PubMed]
- Undurraga, J.; Sim, K.; Tondo, L.; Gorodischer, A.; Azua, E.; Tay, K.H.; Tan, D.; Baldessarini, R.J. Lithium treatment for unipolar major depressive disorder: Systematic review. J. Psychopharmacol. 2019, 33, 167–176. [Google Scholar] [CrossRef]
- Tiihonen, J.; Tanskanen, A.; Hoti, F.; Vattulainen, P.; Taipale, H.; Mehtälä, J.; Lähteenvuo, M. Pharmacological treatments and risk of readmission to hospital for unipolar depression in Finland: A nationwide cohort study. Lancet Psychiatry 2017, 4, 547–553. [Google Scholar] [CrossRef]
- Maruki, T.; Utsumi, T.; Takeshima, M.; Fujiwara, Y.; Matsui, M.; Aoki, Y.; Toda, H.; Watanabe, N.; Watanabe, K.; Takaesu, Y. Efficacy and safety of adjunctive therapy to lamotrigine, lithium, or valproate monotherapy in bipolar depression: A systematic review and meta-analysis of randomized controlled trials. Int. J. Bipolar Disord. 2022, 10, 24. [Google Scholar] [CrossRef]
- Rakofsky, J.J.; Lucido, M.J.; Dunlop, B.W. Lithium in the treatment of acute bipolar depression: A systematic review and meta-analysis. J. Affect. Disord. 2022, 308, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, G.H.; Bahji, A.; Undurraga, J.; Tondo, L.; Baldessarini, R.J. Efficacy and Tolerability of Combination Treatments for Major Depression: Antidepressants plus Second-Generation Antipsychotics vs. Esketamine vs. Lithium. J. Psychopharmacol. 2021, 35, 890–900. [Google Scholar] [CrossRef] [PubMed]
- Denoth-Lippuner, A.; Jessberger, S. Formation and integration of new neurons in the adult hippocampus. Nat. Rev. Neurosci. 2021, 22, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Frodl, T.; Jäger, M.; Smajstrlova, I.; Born, C.; Bottlender, R.; Palladino, T.; Reiser, M.; Möller, H.-J.; Meisenzahl, E.M. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: A 3-year prospective magnetic resonance imaging study. J. Psychiatry Neurosci. 2008, 33, 423–430. [Google Scholar] [PubMed]
- Egeland, M.; Guinaudie, C.; Du Preez, A.; Musaelyan, K.; Zunszain, P.A.; Fernandes, C.; Pariante, C.M.; Thuret, S. Depletion of adult neurogenesis using the chemotherapy drug temozolomide in mice induces behavioural and biological changes relevant to depression. Transl. Psychiatry 2017, 7, e1101. [Google Scholar] [CrossRef] [Green Version]
- Kin, K.; Yasuhara, T.; Kawauchi, S.; Kameda, M.; Hosomoto, K.; Tomita, Y.; Umakoshi, M.; Kuwahara, K.; Kin, I.; Kidani, N.; et al. Lithium counteracts depressive behavior and augments the treatment effect of selective serotonin reuptake inhibitor in treatment-resistant depressed rats. Brain Res. 2019, 1717, 52–59. [Google Scholar] [CrossRef]
- Ricken, R.; Adli, M.; Lange, C.; Krusche, E.; Stamm, T.J.; Gaus, S.; Koehler, S.; Nase, S.; Bschor, T.; Richter, C.; et al. Brain-derived neurotrophic factor serum concentrations in acute depressive patients increase during lithium augmentation of antidepressants. J. Clin. Psychopharmacol. 2013, 33, 806–809. [Google Scholar] [CrossRef]
- Liu, D.; Tang, Q.-Q.; Wang, D.; Song, S.-P.; Yang, X.-N.; Hu, S.-W.; Wang, Z.-Y.; Xu, Z.; Liu, H.; Yang, J.-X.; et al. Mesocortical BDNF signaling mediates antidepressive-like effects of lithium. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2020, 45, 1557–1566. [Google Scholar] [CrossRef]
- Wu, S.; Yin, Y.; Du, L. Blood-Brain Barrier Dysfunction in the Pathogenesis of Major Depressive Disorder. Cell. Mol. Neurobiol. 2021, 42, 2571–2591. [Google Scholar] [CrossRef]
- Taler, M.; Aronovich, R.; Henry Hornfeld, S.; Dar, S.; Sasson, E.; Weizman, A.; Hochman, E. Regulatory effect of lithium on hippocampal blood-brain barrier integrity in a rat model of depressive-like behavior. Bipolar Disord. 2021, 23, 55–65. [Google Scholar] [CrossRef]
- Barchielli, G.; Capperucci, A.; Tanini, D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants 2022, 11, 251. [Google Scholar] [CrossRef]
- Ghimire, S.; Baral, B.K.; Feng, D.; Sy, F.S.; Rodriguez, R. Is selenium intake associated with the presence of depressive symptoms among US adults? Findings from National Health and Nutrition Examination Survey (NHANES) 2011–2014. Nutrition 2019, 62, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Jin, Y.; Unverzagt, F.W.; Liang, C.; Hall, K.S.; Cao, J.; Ma, F.; Murrell, J.R.; Cheng, Y.; Li, P.; et al. Selenium level and depressive symptoms in a rural elderly Chinese cohort. BMC Psychiatry 2012, 12, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira de Almeida, T.L.; Petarli, G.B.; Cattafesta, M.; Zandonade, E.; Bezerra, O.M.d.P.A.; Tristão, K.G.; Salaroli, L.B. Association of Selenium Intake and Development of Depression in Brazilian Farmers. Front. Nutr. 2021, 8, 671377. [Google Scholar] [CrossRef]
- Conner, T.S.; Richardson, A.C.; Miller, J.C. Optimal serum selenium concentrations are associated with lower depressive symptoms and negative mood among young adults. J. Nutr. 2015, 145, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Mokhber, N.; Namjoo, M.; Tara, F.; Boskabadi, H.; Rayman, M.P.; Ghayour-Mobarhan, M.; Sahebkar, A.; Majdi, M.R.; Tavallaie, S.; Azimi-Nezhad, M.; et al. Effect of supplementation with selenium on postpartum depression: A randomized double-blind placebo-controlled trial. J. Matern. Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 2011, 24, 104–108. [Google Scholar] [CrossRef]
- Colangelo, L.A.; He, K.; Whooley, M.A.; Daviglus, M.L.; Morris, S.; Liu, K. Selenium exposure and depressive symptoms: The Coronary Artery Risk Development in Young Adults Trace Element Study. Neurotoxicology 2014, 41, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Kędzierska, E.; Dudka, J.; Poleszak, E.; Kotlińska, J.H. Antidepressant and anxiolytic-like activity of sodium selenite after acute treatment in mice. Pharmacol. Rep. PR 2017, 69, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Kędzierska, E.; Dąbkowska, L.; Obierzyński, P.; Polakowska, M.; Poleszak, E.; Wlaź, P.; Szewczyk, K.; Kotlińska, J. Synergistic Action of Sodium Selenite with some Antidepressants and Diazepam in Mice. Pharmaceutics 2018, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Samad, N.; Rao, T.; Rehman, M.H.U.; Bhatti, S.A.; Imran, I. Inhibitory Effects of Selenium on Arsenic-Induced Anxiety-/Depression-Like Behavior and Memory Impairment. Biol. Trace Elem. Res. 2022, 200, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Guo, Y.; Yan, S.; Guo, X.; Zhao, Y.; Shi, B. The protective effect of selenium on the lipopolysaccharide-induced oxidative stress and depressed gene expression related to milk protein synthesis in bovine mammary epithelial cells. Biol. Trace Elem. Res. 2020, 197, 141–148. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Hao, Z.; Jing, X.; Zhao, Y.; Cheng, X.; Ma, H.; Wang, J.; Wang, J. Mitigation Effects of Selenium Nanoparticles on Depression-Like Behavior Induced by Fluoride in Mice via the JAK2-STAT3 Pathway. ACS Appl. Mater. Interfaces 2022, 14, 3685–3700. [Google Scholar] [CrossRef]
- Yosaee, S.; Clark, C.C.T.; Keshtkaran, Z.; Ashourpour, M.; Keshani, P.; Soltani, S. Zinc in depression: From development to treatment: A comparative/dose response meta-analysis of observational studies and randomized controlled trials. Gen. Hosp. Psychiatry 2022, 74, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, E.; Shams, J.; Sabetkasaei, M.; M-Shirazi, M.; Rashidkhani, B.; Mostafavi, A.; Bornak, E.; Nasrollahzadeh, J. Effects of zinc supplementation on efficacy of antidepressant therapy, inflammatory cytokines, and brain-derived neurotrophic factor in patients with major depression. Nutr. Neurosci. 2014, 17, 65–71. [Google Scholar] [CrossRef]
- Donig, A.; Hautzinger, M. Zinc as an adjunct to antidepressant medication: A meta-analysis with subgroup analysis for different levels of treatment response to antidepressants. Nutr. Neurosci. 2022, 25, 1785–1795. [Google Scholar] [CrossRef]
- Misztak, P.; Sowa-Kućma, M.; Pańczyszyn-Trzewik, P.; Szewczyk, B.; Nowak, G. Antidepressant-like Effects of Combined Fluoxetine and Zinc Treatment in Mice Exposed to Chronic Restraint Stress Are Related to Modulation of Histone Deacetylase. Molecules 2021, 27, 22. [Google Scholar] [CrossRef]
- Rafało-Ulińska, A.; Poleszak, E.; Szopa, A.; Serefko, A.; Rogowska, M.; Sowa, I.; Wójciak, M.; Muszyńska, B.; Krakowska, A.; Gdula-Argasińska, J.; et al. Imipramine Influences Body Distribution of Supplemental Zinc Which May Enhance Antidepressant Action. Nutrients 2020, 12, 2529. [Google Scholar] [CrossRef] [PubMed]
- Rajizadeh, A.; Mozaffari-Khosravi, H.; Yassini-Ardakani, M.; Dehghani, A. Effect of magnesium supplementation on depression status in depressed patients with magnesium deficiency: A randomized, double-blind, placebo-controlled trial. Nutrition 2017, 35, 56–60. [Google Scholar] [CrossRef]
- Tarleton, E.K.; Littenberg, B.; MacLean, C.D.; Kennedy, A.G.; Daley, C. Role of magnesium supplementation in the treatment of depression: A randomized clinical trial. PLoS ONE 2017, 12, e0180067. [Google Scholar] [CrossRef] [Green Version]
- Skalski, M.; Mach, A.; Januszko, P.; Ryszewska-Pokraśniewicz, B.; Biernacka, A.; Nowak, G.; Pilc, A.; Poleszak, E.; Radziwoń-Zaleska, M. Pharmaco-Electroencephalography-Based Assessment of Antidepressant Drug Efficacy-The Use of Magnesium Ions in the Treatment of Depression. J. Clin. Med. 2021, 10, 3135. [Google Scholar] [CrossRef]
- Poleszak, E. Modulation of antidepressant-like activity of magnesium by serotonergic system. J. Neural Transm. 2007, 114, 1129–1134. [Google Scholar] [CrossRef]
- Chen, J.-L.; Zhou, X.; Liu, B.-L.; Wei, X.-H.; Ding, H.-L.; Lin, Z.-J.; Zhan, H.-L.; Yang, F.; Li, W.-B.; Xie, J.-C.; et al. Normalization of magnesium deficiency attenuated mechanical allodynia, depressive-like behaviors, and memory deficits associated with cyclophosphamide-induced cystitis by inhibiting TNF-α/NF-κB signaling in female rats. J. Neuroinflamm. 2020, 17, 99. [Google Scholar] [CrossRef] [Green Version]
- Pochwat, B.; Szewczyk, B.; Sowa-Kucma, M.; Siwek, A.; Doboszewska, U.; Piekoszewski, W.; Gruca, P.; Papp, M.; Nowak, G. Antidepressant-like activity of magnesium in the chronic mild stress model in rats: Alterations in the NMDA receptor subunits. Int. J. Neuropsychopharmacol. 2014, 17, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Ronaldson, A.; Arias de la Torre, J.; Gaughran, F.; Bakolis, I.; Hatch, S.L.; Hotopf, M.; Dregan, A. Prospective associations between vitamin D and depression in middle-aged adults: Findings from the UK Biobank cohort. Psychol. Med. 2022, 52, 1866–1874. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zhang, Y. Associations of Dietary Vitamin C and E Intake With Depression. A Meta-Analysis of Observational Studies. Front. Nutr. 2022, 9, 857823. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, L.; Li, S.; Zhang, D. Associations of dietary vitamin B1, vitamin B2, vitamin B6, and vitamin B12 with the risk of depression: A systematic review and meta-analysis. Nutr. Rev. 2022, 80, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Lam, N.S.K.; Long, X.X.; Li, X.; Saad, M.; Lim, F.; Doery, J.C.; Griffin, R.C.; Galletly, C. The potential use of folate and its derivatives in treating psychiatric disorders: A systematic review. Biomed. Pharmacother. 2022, 146, 112541. [Google Scholar] [CrossRef]
- Smaga, I.; Frankowska, M.; Filip, M. N-acetylcysteine as a new prominent approach for treating psychiatric disorders. Br. J. Pharmacol. 2021, 178, 2569–2594. [Google Scholar] [CrossRef]
- Ullah, H.; Di Minno, A.; Esposito, C.; El-Seedi, H.R.; Khalifa, S.A.M.; Baldi, A.; Greco, A.; Santonastaso, S.; Cioffi, V.; Sperandeo, R.; et al. Efficacy of a food supplement based on S-adenosyl methionine and probiotic strains in subjects with subthreshold depression and mild-to-moderate depression: A monocentric, randomized, cross-over, double-blind, placebo-controlled clinical trial. Biomed. Pharmacother. 2022, 156, 113930. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Liu, Y.; Zhang, S.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Sun, S.; Wang, X.; Zhou, M.; et al. Associations between different types and sources of dietary fibre intake and depressive symptoms in a general population of adults: A cross-sectional study. Br. J. Nutr. 2021, 125, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
INOSITOL – Dr Jolene Brighten
- The impact of myo-inositol supplementation on sleep quality in pregnant women: a randomized, double-blind, placebo-controlled study. J Matern Fetal Neonatal Med. 2022.
- Effects of inositol on glucose homeostasis: Systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2019.
- Effect of dietary myo-inositol supplementation on the insulin resistance and the prevention of gestational diabetes mellitus: study protocol for a randomized controlled trial. Trials. 2020.
- Myo-inositol for insulin resistance, metabolic syndrome, polycystic ovary syndrome and gestational diabetes. Open Heart 2022, 9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896029.
- Inositol supplement improves clinical pregnancy rate in infertile women undergoing ovulation induction for ICSI or IVF-ET. Medicine (Baltimore). 2017.
- The 40:1 myo-inositol/D-chiro-inositol plasma ratio is able to restore ovulation in PCOS patients: comparison with other ratios. Eur Rev Med Pharmacol Sci. 2019.
- Effects of three treatment modalities (diet, myoinositol or myoinositol associated with D-chiro-inositol) on clinical and body composition outcomes in women with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2019.
- Short-term effects of metformin and myo-inositol in women with polycystic ovarian syndrome (PCOS): a meta-analysis of randomized clinical trials. Gynecol Endocrinol. 2019.
- Inositol supplementation and body mass index: A systematic review and meta-analysis of randomized clinical trials. Obes Sci Pract. 2021.
- Controlled trials of inositol in psychiatry. Eur Neuropsychopharmacol. 1997.
- Inositols in PCOS. Molecules. 2020.
- Effects of d-chiro-inositol in lean women with the polycystic ovary syndrome. Endocr Pract. 2002.
- Inositol and In Vitro Fertilization with Embryo Transfer [published correction appears in Int J Endocrinol. 2019 Apr 11;2019:8309405]. Int J Endocrinol. 2017.
- The effect of myoinositol supplementation on insulin resistance in patients with gestational diabetes. Diabet Med. 2011.
- Inositol is an effective and safe treatment in polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Reproductive Biology and Endocrinology 2023, 21:10. https://doi.org/10.1186/s12958-023-01055-z.
- The Role of Inositol in Thyroid Physiology and in Subclinical Hypothyroidism Management. Front Endocrinol (Lausanne) 2021, 12:662582. https://pubmed.ncbi.nlm.nih.gov/34040582.
- Effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome: a perspective, randomized, placebo-controlled study. Menopause 2011, 18:102-104. https://pubmed.ncbi.nlm.nih.gov/20811299.
- A meta-analysis of inositol for depression and anxiety disorders. Hum Psychopharmacol 2014, 29:55-63. https://pubmed.ncbi.nlm.nih.gov/24424706.
- Antenatal dietary supplementation with myo-inositol for preventing gestational diabetes. Cochrane Database Syst Rev 2023, 2:Cd011507. https://pubmed.ncbi.nlm.nih.gov/36790138.
- Inositol Nutritional Supplementation for the Prevention of Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022, 14. https://pubmed.ncbi.nlm.nih.gov/35889788.
- One-year effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome. Climacteric 2012, 15:490-495. https://pubmed.ncbi.nlm.nih.gov/22192068.
- Inositols in Midlife. J Midlife Health 2018, 9:36-38. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879846.
- Inositols and metabolic disorders: From farm to bedside. J Tradit Complement Med 2020, 10:252-259. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340869.
- Effects of Inositol(s) in Women with PCOS: A Systematic Review of Randomized Controlled Trials. Int J Endocrinol 2016, 2016:1849162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097808.
- Impact of myo-inositol treatment in women with polycystic ovary syndrome in assisted reproductive technologies. Reproductive Health 2021, 18:13. https://doi.org/10.1186/s12978-021-01073-3.
- Controlled trials of inositol in psychiatry. Eur Neuropsychopharmacol 1997, 7:147-155. https://pubmed.ncbi.nlm.nih.gov/9169302.
- Inositol supplement improves clinical pregnancy rate in infertile women undergoing ovulation induction for ICSI or IVF-ET. Medicine (Baltimore) 2017, 96:e8842. https://pubmed.ncbi.nlm.nih.gov/29245250.
RESEARCH UPDATE
Elevated genetic risk for multiple sclerosis emerged in steppe pastoralist populations. Nature 2024, 625 (7994): 321. DOI: 10.1038/s41586-023-06618-z.
Future cardiometabolic implications of insulin hypersecretion in response to oral glucose: a prospective cohort study. eClinicalMedicine 2023, Dec 13: https://doi.org/10.1016/j.eclinm.2023.102363.
OXR1 maintains the retromer to delay brain ageing under dietary restriction. Nature Communications, 2024; 15 (1) DOI: 10.1038/s41467-023-44343-3.
Persistent complement dysregulation with signs of thromboinflammation in active Long COVID. Science 2024; 383 (6680): https://www.science.org/doi/10.1126/science.adg7942.
Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nature Medicine, 2020; DOI: 10.1038/s41591-020-1021-2.
Metagenomic analysis of Mesolithic chewed pitch reveals poor oral health among stone age individuals. Scientific Reports, 2024; 13 (1) DOI: 10.1038/s41598-023-48762-6
A Creative Arts Therapy and Nutrition Education Approach for Postmenopausal Women. Art Therapy 2023: https://www.tandfonline.com/doi/full/10.1080/07421656.2023.2267987.
FTY720 requires vitamin B(12)-TCN2-CD320 signaling in astrocytes to reduce disease in an animal model of multiple sclerosis. Cell Rep 2023, 42:113545: https://pubmed.ncbi.nlm.nih.gov/38064339.
Multiple generation distinct toxicant exposures induce epigenetic transgenerational inheritance of enhanced pathology and obesity. Environmental Epigenetics 2023, 9: https://doi.org/10.1093/eep/dvad006.
Ecological study estimating melanoma overdiagnosis in the USA using the lifetime risk method. BMJ Evidence-Based Medicine 2024, bmjebm-2023-112460. https://ebm.bmj.com/content/ebmed/early/2024/01/18/bmjebm-2023-112460.full.pdf.
Sterner Isaksson S, Ólafsdóttir AF, Ivarsson S, The effect of carbohydrate intake on glycaemic control in individuals with type 1 diabetes: a randomised, open-label, crossover trial. The Lancet Regional Health – Europe 2023:100799. https://www.sciencedirect.com/science/article/pii/S2666776223002181.
January 2024
WELCOME
https://www.nhs.uk/live-well/eat-well/how-to-eat-a-balanced-diet/eight-tips-for-healthy-eating.
https://www.hsph.harvard.edu/nutritionsource/healthy-eating-plate.
https://www.who.int/en/news-room/fact-sheets/detail/healthy-diet.
NEWS
Maternal B-vitamin and vitamin D status before, during, and after pregnancy and the influence of supplementation preconception and during pregnancy: Prespecified secondary analysis of the NiPPeR double-blind randomized controlled trial. PLoS Med 2023 Dec 5;20(12):e1004260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697591.
Inflammatory bowel disease patients in the ambulatory setting commonly screen positive for malnutrition. Gastro Hep Advances 2023, Nov 20: https://www.ghadvances.org/article/S2772-5723(23)00182-6/fulltext.
The effects of prenatal and postnatal high-dose vitamin B12 supplementation on human milk vitamin B12: a randomized, double-blind, placebo-controlled trial in Tanzania. Am J Clin Nutr 2023; https://www.sciencedirect.com/science/article/abs/pii/S0002916523660708?via%3Dihub.
“Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in Adults: United States, 2021–2022”: https://www.cdc.gov/nchs/products/databriefs/db488.htm#Summary.
A drug-like molecule engages nuclear hormone receptor DAF-12/FXR to regulate mitophagy and extend lifespan. Nat Aging 2023, https://www.nature.com/articles/s43587-023-00524-9.
Artificial Intelligence vs Clinician Performance in Estimating Probabilities of Diagnoses Before and After Testing. JAMA Network Open 2023, 6:e2347075-e2347075. https://doi.org/10.1001/jamanetworkopen.2023.47075.
OPINION – Dr GEORGIA EDE
“New UN report links processed meats to cancer in humans; red meat also likely to cause the disease”: https://news.un.org/en/story/2015/10/513662.
EAT-Lancet Commission Summary Report: https://eatforum.org/eat-lancet-commission/eat-lancet-commission-summary-report.
Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol. 2012;72(1):135-143. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582325.
David Shaw: “Making a pig’s breakfast of research reporting”, May 14, 2019, J Medical Ethics. https://blogs.bmj.com/medical-ethics/2019/05/14/making-a-pigs-breakfast-of-research-reporting.
Relative risk versus absolute risk: one cannot be interpreted without the other. Nephrology Dialysis Transplantation 2017, 32:ii13-ii18. https://doi.org/10.1093/ndt/gfw465.
“EAT-Lancet’s Plant-Based Planet: 10 Things You Need to Know”, y Dr Georgia Ede, MD, Jan 19 2019: https://www.psychologytoday.com/us/blog/diagnosis-diet/201901/eat-lancets-plant-based-planet-10-things-you-need-know.
Suggested readings and resources:
Stanford Professor John Ioannidis’ 2018 critique of epidemiology published in JAMA: “The Challenge of Reforming Nutritional Epidemiologic Research”
University of Colorado Professor James O. Hill’s 2018 critique of epidemiology published in Frontiers in Nutrition: “The Failure to Measure Dietary Intake Engendered a Fictional Discourse on Diet-Disease Relations“
Science journalist Gary Taubes’ classic 1995 piece in Science: “Epidemiology Faces its Limits“
Humorist and filmmaker Tom Naughton’s thoroughly entertaining (and educational!) 2011 video presentation about epidemiology for the general public: “Science for Smart People“
with Dr. John Schoonbee, Dr. Zoe Harcombe, Prof. Walter Willett, Dr. Aseem Malhotra, Gary Taubes, and Prof. Rita Redberg.
Complete collection of video presentations from the 2018 Swiss Re/BMJ conference Food for Thought: The Science and Politics of Nutrition
Additional articles and videos I’ve created on this topic:
“Brainwashed: The Mainstreaming of Nutritional Mythology“
“Latest Low-Carb Study All Politics, No Science“
“WHO Says Meat Causes Cancer?” blog post and video presentation
“EAT-Lancet’s Plant-Based Planet: 10 Things You Need to Know“
“EAT-Lancet’s Plant-Based Planet: Food in the (Mis)Anthropocene“
MEN’S HEALTH
Muscle-Derived Cytokines Reduce Growth, Viability and Migratory Activity of Pancreatic Cancer Cells. Cancers 2021, 13,15 3820: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345221.
Effects of whole-body electromyostimulation combined with individualized nutritional support on body composition in patients with advanced cancer: a controlled pilot trial. BMC Cancer 2018, 18:886. https://www.ncbi.nlm.nih.gov/pubmed/30208857.
Influence of Diet and Nutrition on Prostate Cancer. Int J Mol Sci 2020, 21: https://www.ncbi.nlm.nih.gov/pubmed/32093338.
A New Perspective of Prostate Cancer Biology through the Gut Microbiome. Cancers (Basel) 2023, 15: https://www.ncbi.nlm.nih.gov/pubmed/36900168.
GUT HEALTH update
Cecal microbiota and mammary gland microRNA signatures are related and modifiable by dietary flaxseed with implications for breast cancer risk. Microbiol Spectr 2023: e0229023. https://www.ncbi.nlm.nih.gov/pubmed/38059614.
Toxicity of cadmium on dynamic human gut microbiome cultures and the protective effect of cadmium-tolerant bacteria autochthonous to the gut. Chemosphere 2023, 338:139581. https://www.sciencedirect.com/science/article/pii/S0045653523018489.
A key genetic factor governing arabinan utilization in the gut microbiome alleviates constipation. Cell Host & Microbe 2023, Nov 21: https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(23)00415-8.
1,8-cineole ameliorates colon injury by downregulating macrophage M1 polarization via inhibiting the HSP90-NLRP3-SGT1 complex. Journal of Pharmaceutical Analysis 2023, 13:984-998. https://www.sciencedirect.com/science/article/pii/S2095177923001284.
Ginsenoside Rk2, a dehydroprotopanaxadiol saponin, alleviates alcoholic liver disease via regulating NLRP3 and NLRP6 inflammasome signaling pathways in mice. Journal of Pharmaceutical Analysis 2023, 13:999-1012. https://www.sciencedirect.com/science/article/pii/S209517792300093X.
Gut microbiota-based pharmacokinetic-pharmacodynamic study and molecular mechanism of specnuezhenide in the treatment of colorectal cancer targeting carboxylesterase. Journal of Pharmaceutical Analysis 2023, 13:1024-1040. https://www.sciencedirect.com/science/article/pii/S2095177923001247.
Modulating a prebiotic food source influences inflammation and immune-regulating gut microbes and metabolites: insights from the BE GONE trial. eBioMedicine 2023, Nov 30: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(23)00439-5/fulltext.
Lactobacillus from the Altered Schaedler Flora maintain IFNγ homeostasis to promote behavioral stress resilience. Brain, Behavior and Immunity 2024, Jan, 115, 458-469: https://www.sciencedirect.com/science/article/pii/S0889159123003343?via%3Dihub.
Metagenomics of the Gut Microbiome in Parkinson’s Disease: Prodromal Changes. Ann Neurol 2023, 94:486-501. https://www.ncbi.nlm.nih.gov/pubmed/37314861.
FEED the BRAIN – PATRICK HOLFORD
- https://www.politico.eu/sponsored-content/global-data-is-key-to-tackling-the-rise-in-brain-health-conditions/
- Crawford M, Marsh, D ‘The Shrinking Brain’ 2023
- Sala-Vila, A.; Tintle, N.; Westra, J.; Harris, W.S. Plasma Omega-3 Fatty Acids and Risk for Incident Dementia in the UK Biobank Study: A Closer Look. Nutrients 2023, 15,4896. https://doi.org/10.3390/ nu1523489
- Sala-Vila, A.; Satizabal, C.L.; Tintle, N.; Melo van Lent, D.; Vasan, R.S.; Beiser, A.S.; Seshadri, S.; Harris, W.S. Red Blood Cell DHA Is Inversely Associated with Risk of Incident Alzheimer’s Disease and All-Cause Dementia: Framingham Offspring Study. Nutrients 2022, 14, 2408. https://doi.org/10.3390/ nu14122408
- Wei BZ, Li L, Dong CW, Tan CC; Alzheimer’s Disease Neuroimaging Initiative; Xu W. The Relationship of Omega-3 Fatty Acids with Dementia and Cognitive Decline: Evidence from Prospective Cohort Studies of Supplementation, Dietary Intake, and Blood Markers. Am J Clin Nutr. 2023
- Loong, S.; Barnes, S.; Gatto, N.M.; Chowdhury, S.; Lee, G.J. Omega-3 Fatty Acids, Cognition, and Brain Volume in Older Adults. Brain Sci.2023,13,1278. https://doi.org/ 10.3390/brainsci13091278
- Ghahremani M et al. Vitamin D supplementation and incident dementia: Effects of sex, APOE, and baseline cognitive status. Alzheimers Dement (Amst). 2023 Mar 1;15(1):e12404. doi: 10.1002/dad2.12404. PMID: 36874594; PMCID: PMC9976297.
- Płudowski P et al Guidelines for Preventing and Treating Vitamin D Deficiency: A 2023 Update in Poland. Nutrients. 2023 Jan 30;15(3):695. doi: 10.3390/nu15030695. PMID: 36771403; PMCID: PMC9920487.
Jia J et al. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: a randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry. 2019 Dec;90(12):1347-1352. doi: 10.1136/jnnp-2018-320199. Epub 2019 Jul 11. PMID: 31296588.
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353432/pdf/nutrients-12-01868.pdf.
12.. Evidence-based prevention of Alzheimer’s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry 2020, Nov;91(11):1201-1209. doi: 10.1136/jnnp-2019-321913.
13. Beydoun MA, Beydoun HA, Gamaldo AA, Teel A, Zonderman AB, Wang Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014 Jun 24;14:643. doi: 10.1186/1471-2458-14-643.
- Pfeiffer C, Clin Chem. 2008; R. Xu, Nature Scientific Reports 2022; Vogiatzlou A, Neurology, 2008
- Vogiatzoglou A, Refsum H, Johnston C, Smith SM, Bradley KM, de Jager C, Budge MM, Smith AD. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology 2008 Sep 9;71(11):826-32. doi: 10.1212/01.wnl.0000325581.26991.f2.
- Teng Z, Feng J, Liu R, Ji Y, Xu J, Jiang X, Chen H, Dong Y, Meng N, Xiao Y, Xie X, Lv P. Cerebral small vessel disease mediates the association between homocysteine and cognitive function. Front Aging Neurosci 2022 Jul 15;14:868777. doi: 10.3389/fnagi.2022.868777.
- See the Joe Rogan show https://www.youtube.com/watch?v=-oqYoNwnOs0.
- Northuis CA, Bell EJ, Lutsey PL, George KM, Gottesman RF, Mosley TH, Whitsel EA, Lakshminarayan K. Cumulative Use of Proton Pump Inhibitors and Risk of Dementia: The Atherosclerosis Risk in Communities Study. Neurology 2023 Oct 31;101(18):e1771-e1778. doi: 10.1212/WNL.0000000000207747. Epub 2023 Aug 9.
19. Moderately elevated preconception fasting plasma total homocysteine is a risk factor for psychological problems in childhood. Public Health Nutr 2019 Jun;22(9):1615-1623. doi: 10.1017/S1368980018003610. Epub 2019 Jan 14.
20. Fenech M, Aitken C, Rinaldi J. Folate, vitamin B12, homocysteine status and DNA damage in young Australian adults. Carcinogenesis 1998 Jul;19(7):1163-71. doi: 10.1093/carcin/19.7.1163.
21. Homocysteine and Dementia: An International Consensus Statement. J Alzheimers Dis 2018;62(2):561-570. doi: 10.3233/JAD-171042.
- Tsiachristas A, Smith AD. B-vitamins are potentially a cost-effective population health strategy to tackle dementia: Too good to be true? Alzheimers Dement (N Y) 2016 Aug 11;2(3):156-161. doi: 10.1016/j.trci.2016.07.002..
- Jernerén F, Elshorbagy AK, Oulhaj A, Smith SM, Refsum H, Smith AD. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr 2015 Jul;102(1):215-21; see also van Soest, A.P.M., van de Rest, O., Witkamp, R.F. et al. DHA status influences effects of B-vitamin supplementation on cognitive ageing: a post-hoc analysis of the B-proof trial. Eur J Nutr 2022, 61, 3731–3739: https://doi.org/10.1007/s00394-022-02924-w;
see also Jernerén F et al. Homocysteine Status Modifies the Treatment Effect of Omega-3 Fatty Acids on Cognition in a Randomized Clinical Trial in Mild to Moderate Alzheimer’s Disease: The OmegAD Study. J Alzheimers Dis 2019;69(1):189-197. doi: 10.3233/JAD-181148. - Lakhan, S.E., Kirchgessner, A. The emerging role of dietary fructose in obesity and cognitive decline. Nutr J 2013, 12, 114.
- Yau PL, Castro MG, Tagani A, Tsui WH, Convit A. Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics 2012 Oct;130(4):e856-64. doi: 10.1542/peds.2012-0324; see also Mangone A, Yates KF, Sweat V, Joseph A, Convit A. Cognitive functions among predominantly minority urban adolescents with metabolic syndrome. Appl Neuropsychol Child 2018 Apr-Jun;7(2):157-163. doi: 10.1080/21622965.2017.1284662.
- https://www.psychiatrist.com/news/a-19-year-old-is-youngest-ever-to-be-diagnosed-with-alzheimers.
27. Yau PL, et al Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics 2012, Oct;130(4):e856-64. doi: 10.1542/peds.2012-0324.
- Zhang X, et al Midlife lipid and glucose levels are associated with Alzheimer’s disease. Alzheimers Dement. 2023
- Fortier M, Castellano CA, St-Pierre V, Myette-Côté É, Langlois F, Roy M, Morin MC, Bocti C, Fulop T, Godin JP, Delannoy C, Cuenoud B, Cunnane SC. A ketogenic drink improves cognition in mild cognitive impairment: Results of a 6-month RCT. Alzheimers Dement 2021, Mar;17(3):543-552. doi: 10.1002/alz.12206.
30. Crawford, M.A..; Sinclair, A.J.; Wang, Y.; Schmidt, W.F.; Broadhurst, C.L.; Dyall, S.C.; Horn, L.; Brenna, J.T.; Johnson, M.R.; Docosahexaenoic Acid Explains the Unexplained in Visual Transduction. Entropy 2023, 25, x. https://doi.org/10.3390/xxxxx.
- Basambombo LL, Carmichael PH, Côté S, Laurin D. Use of Vitamin E and C Supplements for the Prevention of Cognitive Decline. Ann Pharmacother 2017 Feb;51(2):118-124. doi: 10.1177/1060028016673072.
- Peng, M., Liu, Y., Jia, X. et al. Dietary Total Antioxidant Capacity and Cognitive Function in Older Adults in the United States: The NHANES 2011–2014. J Nutr Health Aging 2023, 27, 479–486: https://doi.org/10.1007/s12603-023-1934-9.
33. Nurk E, Refsum H, Drevon CA, Tell GS, Nygaard HA, Engedal K, Smith AD. Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J Nutr 2009, Jan;139(1):120-7. doi: 10.3945/jn.108.095182.
- Lamport DJ, Pal D, Moutsiana C, Field DT, Williams CM, Spencer JP, Butler LT. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology (Berl) 2015, Sep;232(17):3227-34. doi: 10.1007/s00213-015-3972-4. Epub 2015 Jun 7.
- Sesso HD, Manson JE, Aragaki AK, Rist PM, Johnson LG, Friedenberg G, Copeland T, Clar A, Mora S, Moorthy MV, Sarkissian A, Carrick WR, Anderson GL; COSMOS Research Group. Effect of cocoa flavanol supplementation for the prevention of cardiovascular disease events: the COcoa Supplement and Multivitamin Outcomes Study (COSMOS) randomized clinical trial. Am J Clin Nutr 2022 Jun 7;115(6):1490-1500. doi: 10.1093/ajcn/nqac055. PMID: 35294962; PMCID: PMC9170467.
RESEARCH
Accumulation of 4-Hydroxynonenal Characterizes Diabetic Fat and Modulates Adipogenic Differentiation of Adipose Precursor Cells. International Journal of Molecular Sciences 2023, 24:16645. https://www.mdpi.com/1422-0067/24/23/16645.
Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling and Mitochondrial Dysfunction. Biomolecules 2022, 12:1555. https://www.mdpi.com/2218-273X/12/11/1555.
Resident microbes shape the vaginal epithelial glycan landscape. Science Translational Medicine 2023, 15:eabp9599. https://www.science.org/doi/abs/10.1126/scitranslmed.abp9599.
International Pooled Analysis of Leisure-Time Physical Activity and Premenopausal Breast Cancer in Women From 19 Cohorts. Journal of Clinical Oncology, 0:JCO.23.01101. https://ascopubs.org/doi/abs/10.1200/JCO.23.01101.
Prune Consumption Attenuates Proinflammatory Cytokine Secretion and Alters Monocyte Activation in Postmenopausal Women: Secondary Outcome Analysis of a 12-Mo Randomized Controlled Trial: The Prune Study. The Journal of Nutrition 2023, https://www.sciencedirect.com/science/article/pii/S0022316623727326.
Prunes preserve hip bone mineral density in a 12-month randomized controlled trial in postmenopausal women: the Prune Study. Am J Clin Nutr 2022, 116:897-910. https://www.ncbi.nlm.nih.gov/pubmed/35798020.
Forsythiae Fructus attenuates cisplatin-induced cytotoxicity in IEC-6 cells and J774A.1 macrophages by inhibiting NLRP3/caspase-1/GSDMD mediated pyroptosis. Journal of Holistic Integrative Pharmacy 2023, 4:166-177. https://www.sciencedirect.com/science/article/pii/S2707368823000845.
HOMOCYSTEINE – PATRICK HOLFORD
- Homocysteine – from disease biomarker to disease prevention. J Intern Med 2021 Oct;290(4):826-854. doi: 10.1111/joim.13279. Epub 2021 Apr 6. PMID: 33660358.
- The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr 2006, 136:1731S-1740S. https://www.ncbi.nlm.nih.gov/pubmed/16702348.
- “Homocysteine: part 1 of 2. https://spacedoc.com/articles/kilmer-mccully-homocysteine-1.
- “Kilmer McCully: pioneer of the homocysteine theory”. The Lancet 1998, 352 (9137):1364, October 24.
5. Trends in circulating concentrations of total homocysteine among US adolescents and adults: findings from the 1991-1994 and 1999-2004 National Health and Nutrition Examination Surveys. Clin Chem 2008, May;54(5):801-13. doi: 10.1373/clinchem.2007.100214.
6. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology 2008, Sep 9;71(11):826-32. doi: 10.1212/01.wnl.0000325581.26991.f2. PMID: 18779510.
7. Gender- and age-related differences in homocysteine concentration: a cross-sectional study of the general population of China. Sci Rep 2020, Oct 15;10(1):17401. doi: 10.1038/s41598-020-74596-7.
8. Moderately elevated preconception fasting plasma total homocysteine is a risk factor for psychological problems in childhood. Public Health Nutr 2019, Jun;22(9):1615-1623. doi: 10.1017/S1368980018003610.
9. Meta-analysis: association of homocysteine with recurrent spontaneous abortion. Women Health 2021, Aug;61(7):713-720. doi: 10.1080/03630242.2021.1957747.
10. A Novel Review of Homocysteine and Pregnancy Complications. Biomed Res Int 2021, May 6;2021:6652231. doi: 10.1155/2021/6652231. - Association between homocysteine levels and all-cause mortality: A dose-response meta-analysis of prospective studies. Sci Rep 2017, 7:4769. https://www.ncbi.nlm.nih.gov/pubmed/28684797.
- Subclinical inflammation, telomere shortening, homocysteine, vitamin B6, and mortality: the Ludwigshafen Risk and Cardiovascular Health Study. Eur J Nutr 2020, 59:1399–411.
- Cerebral small vessel disease mediates the association between homocysteine and cognitive function. Front. Aging Neurosci. 2022,14:868777. doi: 10.3389/fnagi.2022.868777
- Read both “Don’t Phos Over Tau”: recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer’s disease and other tauopathies. Mol Neurodegeneration 2021,16, 37: https://doi.org/10.1186/s13024-021-00460-5; also Homocysteine exacerbates β-amyloid, tau pathology, and cognitive deficit in a mouse model of Alzheimer’s disease with plaques and tangles. Ann. Neurol. 2014, 75: 851–63; also Homocysteine Increases Tau Phosphorylation, Truncation and Oligomerization. Int J Mol Sci. 2018 Mar 17;19(3):891. doi: 10.3390/ijms19030891, and N-homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer’s disease and vascular dementia. J Pathol 2019 Jul;248(3):291-303. doi: 10.1002/path.5254.
- Homocysteine Lowering and Cardiovascular Events after Acute Myocardial Infarction. New England Journal of Medicine 2006, 354:1578-1588. https://www.nejm.org/doi/full/10.1056/NEJMoa055227.
- Association between the risk and severity of Parkinson’s disease and plasma homocysteine, vitamin B12 and folate levels: a systematic review and meta-analysis. Front. Aging Neurosci. 2023,15:1254824. doi: 10.3389/fnagi.2023.1254824.
December 2023
EDITOR’S NOTE
Opportunistic health screening for cardiovascular and diabetes risk factors in primary care dental practices: experiences from a service evaluation and a call to action. British Dental Journal 2023, 235:727-733. https://doi.org/10.1038/s41415-023-6449-6.
Chair Care: https://childrenshealthdefense.org/defender/chair-care-new-mexico-hairstylists-cdc-covid-flu-vaccines.
“5 Questions: John Ioannidis calls for more rigorous nutrition research”, by Hanae Armitage. Stanford Medicine News Centre, July 16, 2018: https://med.stanford.edu/news/all-news/2018/07/john-ioannidis-calls-for-more-rigorous-nutrition-research.html.
NEWS
Childhood adversity and COVID-19 outcomes in the UK Biobank.
J Epidemiol Community Health 2023: https://www.ncbi.nlm.nih.gov/pubmed/37914378.
Double blind randomized controlled trial of saline solution gargling and nasal rinsing in SARS-CoV-2 infection. Paper presented at the ACAAI Annual Scientific Meeting, November 2023: https://acaai.org/news/acaai-2023-annual-meeting-newsroom.
Feasibility and impact of ketogenic dietary interventions in polycystic kidney disease: KETO-ADPKD-a randomized controlled trial. Cell Rep Med 2023:101283. https://www.ncbi.nlm.nih.gov/pubmed/37935200.
Target-D studies: presented at the American Heart Association’s Scientific Sessions 2023 in Philadelphia on November 12 and 13.
Characteristics of Participants Enrolled in a Randomized Controlled Trial Evaluating Vitamin D Normalization on Major Adverse Cardiovascular-Related Events: The Target-D Trial. Circulation 2023, 148:A13308-A13308. https://www.ahajournals.org/doi/abs/10.1161/circ.148.suppl_1.13308.
Higher Than Daily RDA Recommended Vitamin D<sub>3</sub> Dosing and Multiple Titrations Are Required to Achieve >40 ng/mL 25-hydroxy Vitamin D Levels in Acute Coronary Syndrome (ACS) Participants Enrolled and Randomized to Targeted Vitamin D Treatment: The Target D Trial. Circulation 2023, 148:A14841-A14841. https://www.ahajournals.org/doi/abs/10.1161/circ.148.suppl_1.14841.
Quasi-experimental evaluation of a nationwide diabetes prevention programme. Nature 2023, Nov 15: https://www.nature.com/articles/s41586-023-06756-4.
Burden of proof: combating inaccurate citation in biomedical literature. BMJ 2023, Nov 6, 383:e076441. http://www.bmj.com/content/383/bmj-2023-076441.abstract.
Will the ROB-ME checklist prevent omission bias in meta-analyses? BMJ 2023, Nov 20, 383:p2653. http://www.bmj.com/content/383/bmj.p2653.abstract.
CHILDREN’S HEALTH – LUCINDA MILLER
Microbiome diversity is a modifiable virulence factor for cryptosporidiosis. Virulence 2023, 14:2273004. https://doi.org/10.1080/21505594.2023.2273004.
Bacharier LB, Stokes J, Litonjua AA: Prenatal vitamin D supplementation to prevent childhood asthma: 15-year results from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). J Allergy Clin Immunol 2023. https://www.ncbi.nlm.nih.gov/pubmed/37852328.
Associations of positive childhood experiences with binge-eating disorder characteristics and intuitive eating among college students. Appetite 2023, Oct 5;191:107073. https://pubmed.ncbi.nlm.nih.gov/37802219.
Multiple micronutrient deficiencies in early life cause multi-kingdom alterations in the gut microbiome and intrinsic antibiotic resistance genes in mice. Nat Microbiol 2023: https://www.ncbi.nlm.nih.gov/pubmed/37973864.
OPINION – Dr KARA FITZGERALD, ND
- Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging (Albany NY). 2021 Apr 12;13(7):9419-9432. doi: 10.18632/aging.202913. Epub 2021 Apr 12. PMID: 33844651; PMCID: PMC8064200.
- Potential reversal of biological age in women following an 8-week methylation-supportive diet and lifestyle program: a case series. Aging (Albany NY) 2023, 15:1833-1839. https://www.ncbi.nlm.nih.gov/pubmed/36947707.
- DunedinPACE, a DNA methylation biomarker of the pace of aging. Elife 2022, 11https://www.ncbi.nlm.nih.gov/pubmed/35029144.
- Constant molecular aging rates vs. the exponential acceleration of mortality. Proc Natl Acad Sci U S A 2016, 113:1121-1123. https://www.ncbi.nlm.nih.gov/pubmed/26792520.
- The effect of polyphenols on DNA methylation-assessed biological age attenuation: the DIRECT PLUS randomized controlled trial. BMC Med 2023, 21:364. https://www.ncbi.nlm.nih.gov/pubmed/37743489.
BAD SCIENCE – Dr ZOË HARCOMBE, PhD
- https://www.theguardian.com/science/2023/oct/19/eating-red-meat-twice-a-week-may-increase-type-2-diabetes-risk-study-finds
https://www.nytimes.com/2023/10/20/well/eat/red-meat-diabetes.html
2. Red meat intake and risk of type 2 diabetes in a prospective cohort study of United States females and males. Am J Clin Nutr 2023, Oct 19. https://ajcn.nutrition.org/article/S0002-9165(23)66119-2/fulltext.
3. https://www.zoeharcombe.com/2011/08/red-meat-diabetes/
4. https://www.dailymail.co.uk/health/article-2024603/Diabetes-threat-slices-bacon-day-increased-50.html
5. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr 2011. https://pubmed.ncbi.nlm.nih.gov/21831992.
6. References from my PhD for the unreliability of FFQs:
– Beaton et al. Source of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. Carbohydrate sources, vitamins, and minerals. Am J Clin Nutr. 1983.
– Kipnis et al. Empirical evidence of correlated biases in dietary assessment instruments and its implications. Am J Epidemiol. 2001.
– Cook et al. The problem of accuracy in dietary surveys. Analysis of the over 65 UK National Diet and Nutrition Survey. J Epidemiol Community Health. 2000.
– Willett WC. Nutritional epidemiology issues in chronic disease at the turn of the century. Epidemiol Rev. 2000.
– Archer et al. The Inadmissibility of What We Eat in America and NHANES Dietary Data in Nutrition and Obesity Research and the Scientific Formulation of National Dietary Guidelines. Mayo Clin Proc. 2015.
7. https://nurseshealthstudy.org/sites/default/files/questionnaires/1980long.pdf from https://nurseshealthstudy.org/participants/questionnaires.
8. Validity of a dietary questionnaire assessed by comparison with multiple weighed dietary records or 24-hour recalls. Am J Epidemiol 2017, Apr 1;185(7):570-584. https://pubmed.ncbi.nlm.nih.gov/28338828.
Reproducibility and Validity of a Semiquantitative Food Frequency Questionnaire in Men Assessed by Multiple Methods. Am J Epidemiol 2021, 190:1122-1132. https://www.ncbi.nlm.nih.gov/pubmed/33350436.
9. Table 2 in the main paper reported intake in servings/day and calibrated intake in servings/day. I’ve extracted the relevant numbers below:
In all cases, calibration narrows the range from Q1 to Q5; and quite substantially. This would attribute smaller differences in meat intake to the same differences in diagnoses. This would make one serving “riskier.”. The calibration implies that women underestimate intake in the lowest group, get it about right in the middle group and overestimate in the highest group. Men underestimate, but less so from bottom to top. This could be a review in itself.
10. I checked the raw data from Table 2 and calculated raw case rates from cases and person years for each study and each quintile. This confirmed that, using unadjusted data and using Q1 as the reference 1.00, the total red meat case rate was 1.77, the processed red meat case rate was 1.86 and the unprocessed red meat case rate was 1.60. The total red meat number was between the other two, as would be expected.
11. https://www.zoeharcombe.com/2015/05/food-groups.
12. https://www.zoeharcombe.com/2016/09/the-bradford-hill-criteria.
13. I have built a simple calculator where I enter cases and person years and claimed relative risk difference. The calculator can then be used to find the numbers that meet the two criteria of i) averaging the overall case rate and ii) having one number higher than the other to match the relative risk difference.
14. https://www.zoeharcombe.com/2022/04/meat-saturated-fat.
15. https://ods.od.nih.gov/factsheets/Iron-HealthProfessional.
https:// www.zoeharcombe.com/2018/10/heme-iron.
https://www.zoeharcombe.com/2022/10/does-meat-cause-cd-t2d.
https:// www.zoeharcombe.com/2021/04/meat-disease-again.
16. https://ultimatepaleoguide.com/people/shawn-baker.
IN PRACTICE special – ANNE PEMBERTON
1. Healing Developmental Trauma: How Early Trauma Affects Self-Regulation, Self-Image, and the Capacity for Relationship, by Laurence Heller PhD and Aline LaPierre PsyD. North Atlantic Books, 1st edition (September 25, 2012).
2. https://www.autism.org.uk/advice-and-guidance/what-is-autism/autistic-women-and-girls#:~:text=Autistic%20characteristics%20in%20women%20and,result%20in%20anxiety%20and%20overwhelm).
3. https://www.heartmath.org/articles-of-the-heart/our-veterans-military-service-people/ptsd-may-be-greatest-injury-of-war-today.
4. Trauma, Experience and Narrative in Europe after World War II: https://link.springer.com/book/10.1007/978-3-030-84663-3.
- “It’s Not Me, It’s You: Projection Explained in Human Terms”: https://www.healthline.com/health/projection-psychology.
- “What is transgenerational trauma, and how does it affect our families?”
https://www.betterup.com/blog/transgenerational-trauma.
- Stanley Rosenberg: https://stanleyrosenberg.com.
8. “The Original ACE Study”: https://nhttac.acf.hhs.gov/soar/eguide/stop/adverse_childhood_experiences.
9. Eastern Body, Western Mind: Psychology and the Chakra System As a Path to the Self, by Judith Anodea, Clarkson Potter/Ten Speed; Revised edition (August 1, 2004).
10. The Importance and Role of Proprioception in the Elderly: a Short Review. Mater Sociomed 2019, 31:219-221. https://www.ncbi.nlm.nih.gov/pubmed/31762707.
11. Somatics: Reawakening The Mind’s Control Of Movement, Flexibility, And Health, by Thomas Hanna, Da Capo Press; Illustrated edition (August 4, 2004).
12. “Energy field studies overview & general information”: https://davidrouter.com/about/energy-field-studies. - Eileen McKusick: https://www.biofieldtuning.com.
Polyphenols:
A Polyphenol-Rich Diet Increases the Gut Microbiota Metabolite Indole 3-Propionic Acid in Older Adults with Preserved Kidney Function. Mol Nutr Food Res 2022, 66:e2100349. https://www.ncbi.nlm.nih.gov/pubmed/35315592.
NEWS extra and RESEARCH in brief (page 42)
Widening Gender Gap in Life Expectancy in the US, 2010-2021. JAMA Internal Medicine 2023. DOI: 10.1001/jamainternmed.2023.6041.
Current evidences of therapeutic effects of sulforaphane on oral and intestinal microbiota in Autism Spectrum Disorder – ASD. Concilium 2023: https://pdfs.semanticscholar.org/4dc8/22a03f75cfa3cbb6983f61f627f9f181c86b.pdf.
Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases. Nutrients 2023, 15, 4297. https://doi.org/10.3390/nu15194297. The Effect of Beta-Carotene on Cognitive Function: A Systematic Review. Brain Sci. 2023 Oct 17;13(10):1468. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605009.
RESEARCH UPDATE
Systemic Metabolic Signatures of Oral Diseases. Journal of Dental Research, 2023: https://journals.sagepub.com/doi/10.1177/00220345231203562.
Vitamin B12 is a limiting factor for induced cellular plasticity and tissue repair. Nature Metabolism 2023, Nov 16: https://www.nature.com/articles/s42255-023-00916-6.
A Mediterranean Diet‐Based Metabolomic Score and Cognitive Decline in Older Adults: A Case–Control Analysis Nested within the Three‐City Cohort Study. Molecular Nutrition & Food Research 2023, Oct 23: https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202300271.
Obesity alters the circadian profiles of energy metabolism and glucose regulation in humans. Obesity 2023, Nov. 15, 2023: https://onlinelibrary.wiley.com/doi/full/10.1002/oby.23940.
Adult Organophosphate and Carbamate Insecticide Exposure and Sperm Concentration: A Systematic Review and Meta-Analysis of the Epidemiological Evidence. Environmental Health Perspectives 2023,131 (11): https://ehp.niehs.nih.gov/doi/10.1289/EHP12678.
IgE to common food allergens is associated with cardiovascular mortality in the National Health and Examination Survey and the Multi-Ethnic Study of Atherosclerosis. Journal of Allergy and Clinical Immunology 2023, Nov 9: https://www.jacionline.org/article/S0091-6749(23)01251-4/fulltext.
Early life exposure to broccoli sprouts confers stronger protection against enterocolitis development in an immunological mouse model of inflammatory bowel disease. mSystems 2023, Nov 9: https://journals.asm.org/doi/10.1128/msystems.00688-23.
IgE Mediated Flaxseed Allergy in Non-Atopic Toddler Polysensitized to Tree Nuts but Tolerating Other Seeds and Contact dermatitis of the hands caused by flaxseed in artist’s paint. Papers presented at the ACAAI Annual Scientific Meeting, November 2023: https://acaai.org/news/acaai-2023-annual-meeting-newsroom.
Autoregulatory control of mitochondrial glutathione homeostasis.
Science 2023: https://www.science.org/doi/10.1126/science.adf4154.
Epsilon toxin–producing Clostridium perfringens colonize the multiple sclerosis gut microbiome overcoming CNS immune privilege. The Journal of Clinical Investigation 2023,133. https://doi.org/10.1172/JCI163239.
A review of the sheep-multiple sclerosis connection. Medical Hypotheses 1986, 19:27-39. https://www.sciencedirect.com/science/article/pii/0306987786901349.
Diet-induced glial insulin resistance impairs the clearance of neuronal debris in Drosophila brain. PLOS Biology, 2023; 21 (11): e3002359.
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002359.
Exploring the Interrelationships between Diabetes, Nutrition, Anxiety, and Depression: Implications for Treatment and Prevention Strategies. Nutrients 2023, 15:4226. https://www.mdpi.com/2072-6643/15/19/4226.
November 2023
NEWS
CD38 regulates ovarian function and fecundity via NAD(+) metabolism. iScience 2023, 26:107949. https://www.ncbi.nlm.nih.gov/pubmed/37822499.
Computer-aided diseases diagnosis system based on tongue color analysis: A review. AIP Conf. Proc 2023, 2804, 040003: https://doi.org/10.1063/5.0154231.
Analysis of Tongue Color-Associated Features among Patients with PCR-Confirmed COVID-19 Infection in Ukraine. Pesqui Bras Odontopediatria Clín Integr 2021: https://doi.org/10.1590/pboci.2021.109.
Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain 2023, https://www.ncbi.nlm.nih.gov/pubmed/37849234.
Frailty and survival in the 1918 influenza pandemic. Proceedings of the National Academy of Sciences, 2023; 120 (42) DOI: 10.1073/pnas.2304545120.
Social, clinical, and policy implications of ultra-processed food addiction. BMJ, 2023; e075354 DOI: 10.1136/bmj-2023-075354.
CONFERENCE – LEO PRUIMBOOM
Intermittent living; the use of ancient challenges as a vaccine against the deleterious effects of modern life – A hypothesis. Medical Hypotheses 2018, 120:28-42. https://www.sciencedirect.com/science/article/pii/S0306987718305723.
IBD and IBS – ELLIOT OVERTON
- The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci. 2018 Feb 7;12:49.
2. Immunohistochemical estimation of brain choline acetyltransferase and somatostatin related to the impairment of avoidance learning induced by thiamine deficiency. Brain Res Bull 2000, 52:189-196. https://www.ncbi.nlm.nih.gov/pubmed/10822160.
3. Effect of thiamine deficiency on canine gastric secretion of acid. Am J Physiol 1959, 197:253-256. https://www.ncbi.nlm.nih.gov/pubmed/14414652.
4. Gastrointestinal Beriberi and Wernicke’s Encephalopathy Triggered by One Session of Heavy Drinking. Case Rep Neurol 2019, 11:124-131. https://www.ncbi.nlm.nih.gov/pubmed/31543793.
5. Effect of thiamin deficiency on pancreatic acinar cell function. Am J Clin Nutr 1982, 36:500-504. https://www.ncbi.nlm.nih.gov/pubmed/6180623.
6. Effect of dietary thiamin deficiency on intestinal functions in rats. Am J Clin Nutr 1984, 40:226-234. https://www.ncbi.nlm.nih.gov/pubmed/6465054.
7. “About TTFD: A Thiamine Derivative”, by Derrick Lonsdale, MD: https://www.hormonesmatter.com/ttfd-thiamine-derivative.
8. Effect Of Thiamine Tetrahydrofurfuryl Disulfide upon the Intestinal Motility. The Journal Of Vitaminology 1965, 11:210-214. https://www.jstage.jst.go.jp/article/jnsv1954/11/3/11_3_210/_article.
9. The Effects Of Thiamine Tetrahydrofurfuryl Disulfide upon the movement of the isolated small intestine. The Journal Of Vitaminology 1965, 11:253-260. https://www.jstage.jst.go.jp/article/jnsv1954/11/4/11_4_253/_article.
10. Stimulating effect of thiamine and its derivatives on rat intestinal muscular contraction. Vitamins 1966, 34:390-392: https://www.jstage.jst.go.jp/article/vso/34/4/34_KJ00002905111/_article/-char/en.
11. Vitamins 1965, 31 (1): 95-96. https://doi.org/10.20632/vso.31.1_95_4.
12. The Influences of Drugs on the Experimental Constipation of Mice treated with Atropine and Papaverine. The Journal of Kansai Medical University 1973, 25:300-321. https://www.jstage.jst.go.jp/article/jkmu1956/25/3/25_300/_article/-char/en.
13. Postgastrectomy polyneuropathy with thiamine deficiency. J Neurol Neurosurg Psychiatry 2001, 71:357-362. https://www.ncbi.nlm.nih.gov/pubmed/11511711.
Additional stories
Vitamin D Deficiency (VDD) and Benefits of Supplementation in Veterans with IBS-D. Diagnostics (Basel) 2023, 13 (17) 2807: https://www.ncbi.nlm.nih.gov/pubmed/37685345.
Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 2022, 603:672-678. https://www.ncbi.nlm.nih.gov/pubmed/35296857.
GUT and CLINICAL PRACTICE – Dr SARAH MYHILL
Dr Caroline Pond: her book The Fats of Life was published in 1988: https://www.amazon.co.uk/Fats-Life-Caroline-M-Pond/dp/0521635772.
Fascinating short interview with her is here: https://www.wildcru.org/news/19477.
Nishihara – an example of his research:
Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain 2022, 145:4334-4348. https://www.ncbi.nlm.nih.gov/pubmed/35085379.
Dr Myhill’s papers:
Myhill S, Booth NE, McLaren-Howard J: Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med 2009, 2:1-16. https://www.ncbi.nlm.nih.gov/pubmed/19436827.
Booth NE, Myhill S, McLaren-Howard J: Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int J Clin Exp Med 2012, 5:208-220. https://www.ncbi.nlm.nih.gov/pubmed/22837795.
Myhill S, Booth NE, McLaren-Howard J: Targeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) – a clinical audit. Int J Clin Exp Med 2013, 6:1-15. https://www.ncbi.nlm.nih.gov/pubmed/23236553.
Vedicinals-9:
https://www.vedicinals.com.
https://drmyhill.co.uk/wiki/Vedicinal_9_for_Long_Covid,_Spikopathy_and_ME.
Methylene blue, American Society for Microbiology: https://asm.org/Articles/2022/March/Methylene-Blue-The-Little-Known-Disinfectant.
UK incidence: https://crohnsandcolitis.org.uk/media/4e5ccomz/epidemiology-summary-final.pdf.
RORgammat-Raftlin1 complex regulates the pathogenicity of Th17 cells and colonic inflammation. Nat Commun 2023, 14:4972. https://www.ncbi.nlm.nih.gov/pubmed/37591835.
Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 2022, 603:672-678. https://www.ncbi.nlm.nih.gov/pubmed/35296857.
MITOCHONDRIA – Dr DAVID MANTLE
Mantle D, Millichap L, Castro-Marrero J, Hargreaves IP: Primary Coenzyme Q10 Deficiency: An Update. Antioxidants (Basel) 2023, 12https://www.ncbi.nlm.nih.gov/pubmed/37627647.
Mantle D, Hargreaves IP: Coenzyme Q10 and Endocrine Disorders: An Overview. Antioxidants (Basel) 2023, 12https://www.ncbi.nlm.nih.gov/pubmed/36830072.
Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: a 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. Int J Cardiol 2013;167(5):1860-6. doi: 10.1016/j.ijcard.2012.04.156.
Ginkgo biloba Food Supplements on the European Market – Adulteration Patterns Revealed by Quality Control of Selected Samples. Planta Med 2018;84(6-07):475-482. doi: 10.1055/a-0581-5203.
Hargreaves IP, Mantle D. Supplementation with selenium and coenzyme Q10 in critically ill patients. Br J Hosp Med (Lond). 2019;80(10):589-593. doi: 10.12968/hmed.2019.80.10.589.
Hargreaves I., Mantle D., Milford D. Chronic kidney disease and coenzyme Q10 supplementation. J Kidney Care 2019;4:82–90. doi: 10.12968/jokc.2019.4.2.82.
Hargreaves I, Heaton RA, Mantle D. Disorders of human Coenzyme Q10 metabolism: An overview. Int J Mol Sci 2020;21(18):6695. doi: 10.3390/ijms21186695.
The instability of the lipid-soluble antioxidant ubiquinol: Part 1-lab studies. Integr Med (Encinitas) 2021;20:24-28.
The instability of the lipid-soluble antioxidant ubiquinol: Part 2 – dog studies. Integr Med (Encinitas) 2021;20:26–30
Pharmaceutical quality of different Ginkgo biloba brands. J Pharm Pharmacol 2002 May;54(5):661-9. Doi: 10.1211/0022357021778970.
Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition 2019;57:133–140. doi: 10.1016/j.nut.2018.05.020.
Mantle D. CoQ10 to treat and prevent heart disease. Br J Cardiac Nurs 2015;10:382–387. doi: 10.12968/ bjca.2015.10.8.382.
Mantle D. Coenzyme Q10 supplementation for diabetes and its complications: An overview. Br J Diabetes Vasc Dis 2017;17:145–148. doi: 10.15277/bjd.2017.149.
Mantle D, Dybring A. Bioavailability of Coenzyme Q10: An Overview of the Absorption Process and Subsequent Metabolism. Antioxidants (Basel). 2020;9(5):386. doi: 10.3390/antiox9050386.
Mantle D, Hargreaves IP. CoQ10 supplementation in non-alcoholic fatty liver disease: an overview. Brit J Gastrointestinal Nursing (Liver nursing supplement), S1-S7.
Mantle D, Hargreaves IP. Mitochondrial Dysfunction and Neurodegenerative Disorders: Role of Nutritional Supplementation. Int J Mol Sci 2022;23(20):12603. doi: 10.3390/ijms232012603.
Mantle D, Hargreaves IP. Coenzyme Q10: Role in less common age-related disorders. Antioxidants (Basel) 2022;11(11):2293. doi: 10.3390/antiox11112293.
Mantle D, Hargreaves IP. Coenzyme Q10 and Endocrine Disorders: An Overview. Antioxidants (Basel) 2023;12(2):514. doi: 10.3390/antiox12020514.
Mantle D, Heaton RA, Hargreaves IP. Coenzyme Q10 and Immune Function: An Overview. Antioxidants (Basel) 2022;10(5):759. doi: 10.3390/antiox10050759.
Discrimination of Adulterated Ginkgo Biloba Products Based on 2T2D Correlation Spectroscopy in UV-Vis Range. Molecules 2022 Jan 10;27(2):433. doi: 10.3390/molecules27020433.
The coenzyme Q10 content of the average Danish diet. Int J Vitam Nutr Res 1997;67:123–129.
NEWS/RESEARCH extra
Serotonin reduction in post-acute sequelae of viral infection. Cell 2023, https://www.ncbi.nlm.nih.gov/pubmed/37848036.
Higher circulating vitamin B12 is associated with lower levels of inflammatory markers in individuals at high cardiovascular risk and in naturally aged mice. Journal of the Science of Food and Agriculture 2023. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.12976.
Patient safety, self-injection, and B12 deficiency: a UK cross-sectional survey. The British Journal of General Practice 2022, 72:e891 – e898: https://pubmed.ncbi.nlm.nih.gov/36192360.
Polyamine metabolite spermidine rejuvenates oocyte quality by enhancing mitophagy during female reproductive aging. Nature Aging 2023, https://doi.org/10.1038/s43587-023-00498-8.
TRAUMA-INFORMED PRACTICE – ELAINE WILKINS
1. https://www.recovery.org.uk/addiction.
2. Intergenerational Trauma: “Do You Carry the Trauma of Your Ancestors?” Berkeley Scientific Journal: https://bsj.berkeley.edu/do-you-carry-the-trauma-of-your-ancestors.
3. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med 1998, 14:245-258. https://www.ncbi.nlm.nih.gov/pubmed/9635069.
4. Can Family Secrets Make You Sick?
https://www.npr.org/sections/health-shots/2015/03/02/377569413/can-family-secrets-make-you-sick.
RESEARCH update
Adult Attention-Deficit/Hyperactivity Disorder and the Risk of Dementia. JAMA Network Open, 2023; 6 (10): e2338088. DOI: 10.1001/jamanetworkopen.2023.38088.
Seasonal light hours modulate peripheral clocks and energy metabolism in mice. Cell Metab 2023, 35:1722-1735 e1725. https://www.ncbi.nlm.nih.gov/pubmed/37689069
Exploratory profiles of phenols, parabens, and per- and poly-fluoroalkyl substances among NHANES study participants in association with previous cancer diagnoses. Journal of Exposure Science & Environmental Epidemiology, 2023; DOI: 10.1038/s41370-023-00601-6.
The Devil they Knew: Chemical Documents Analysis of Industry Influence on PFAS Science. Annals of Global Health 2023: https://annalsofglobalhealth.org/articles/10.5334/aogh.4013.
Feasibility of a dietary intervention to modify gut microbial metabolism in patients with hematopoietic stem cell transplantation. Nature Medicine 2023: https://www.nature.com/articles/s41591-023-02587-y.
Probiotics Bifidobacterium lactis M8 and Lactobacillus rhamnosus M9 prevent high blood pressure via modulating the gut microbiota composition and host metabolic products. mSystems 2023: https://journals.asm.org/doi/10.1128/msystems.00331-23
October 2023
WELCOME
PA training: https://www.healthcareers.nhs.uk/explore-roles/medical-associate-professions/roles-medical-associate-professions/physician-associate.
PA assisting in surgery: https://www.fparcp.co.uk/about-fpa/news/spotlight-series-physician-associates-pas-in-surgical-specialties-urology.
Obesity: https://www.businessinsider.com/more-doctors-get-certified-treat-obesity-ozempic-wegovy-2023-9.
NEWS.
Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med 2023, 15:eabq1533. https://www.ncbi.nlm.nih.gov/pubmed/37556555.
EWG map: https://www.ewg.org/interactive-maps/pfas_in_wildlife/map.
Discussion. Has the human population become an sentinel for the adverse effects of PFAS contamination on wildlife health and endangered species? Science of The Total Environment 2023.
Distinguishing features of Long COVID identified through immune profiling. Nature 2023, Sept 23: https://www.nature.com/articles/s41586-023-06651-y.
Pediatric ADHD Medication Errors Reported to United States Poison Centers, 2000 to 2021. Pediatrics 2023; DOI: 10.1542/peds.2023-061942.
Snack quality and snack timing are associated with cardiometabolic blood markers: the ZOE PREDICT study. European Journal of Nutrition, 2023; DOI: 10.1007/s00394-023-03241-6.
Impact of Yoga Versus Memory Enhancement Training on Hippocampal Connectivity in Older Women at Risk for Alzheimer’s Disease. Journal of Alzheimer’s Disease 2023, 95:1, 149-159. https://content.iospress.com/articles/journal-of-alzheimers-disease/jad221159.
Effects of Ketogenic Diet on Reproductive Hormones in Women With Polycystic Ovary Syndrome. J Endocr Soc 2023, 7:bvad112. https://www.ncbi.nlm.nih.gov/pubmed/37693687.
Senolytic therapy in mild Alzheimer’s disease: a phase 1 feasibility trial. Nature Medicine 2023: https://www.nature.com/articles/s41591-023-02543-w.
Effects of six-month creatine supplementation on patient- and clinician-reported outcomes, and tissue creatine levels in patients with post-COVID-19 fatigue syndrome. Food Science & Nutrition 2023, 00, 1–7. https://onlinelibrary.wiley.com/doi/10.1002/fsn3.3597.
ANTIOXIDANTS – SIMON MARTIN
Antioxidants stimulate BACH1-dependent tumor angiogenesis. Journal of Clinical Investigation 2023, online Aug 31: https://pubmed.ncbi.nlm.nih.gov/37651203.
Antioxidants Promote Intestinal Tumor Progression in Mice. Antioxidants 2021, 10:241. https://www.mdpi.com/2076-3921/10/2/241.
Incidence of cancer and mortality following alpha-tocopherol and beta-carotene supplementation: a postintervention follow-up. JAMA 2003, 290:476-485. https://www.ncbi.nlm.nih.gov/pubmed/12876090.
Vitamin C
1. The orthomolecular treatment of cancer. II. Clinical trial of high-dose ascorbic acid supplements in advanced human cancer. Chem Biol Interact 1974, 9:285-315. https://www.ncbi.nlm.nih.gov/pubmed/4430016.
2. A proposition: megadoses of vitamin C are valuable in the treatment of cancer. Nutr Rev 1986, 44:28-32. https://www.ncbi.nlm.nih.gov/pubmed/3951764.
3. The treatment of poliomyelitis and other virus diseases with vitamin C. South Med Surg 1949, 111:209-214. https://www.ncbi.nlm.nih.gov/pubmed/18147027.
4. Observations On the Dose and Administration of Ascorbic Acid When Employed Beyond the Range Of A Vitamin In Human Pathology. Journal of Orthomolecular Medicine 2014,13: 198-210. http://orthomolecular.org/library/jom/1998/pdf/1998-v13n04-p198.pdf.
5. Vitamin C, titrating to bowel tolerance, anascorbemia, and acute induced scurvy. Med Hypotheses 1981, 7:1359-1376. https://www.ncbi.nlm.nih.gov/pubmed/7321921.
6. Vitamin C in the treatment of acquired immune deficiency syndrome (AIDS). Med Hypotheses 1984, 14:423-433. https://www.ncbi.nlm.nih.gov/pubmed/6238227.
7. A World without AIDS, Leon Chaitow and Simon Martin (Thorsons, 1988).
8. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N Engl J Med 1979, 301:687-690. https://www.ncbi.nlm.nih.gov/pubmed/384241.
9. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med 2004, 140:533-537. https://www.ncbi.nlm.nih.gov/pubmed/15068981.
10. Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress. Sci Rep 2015, 5:13896. https://www.ncbi.nlm.nih.gov/pubmed/26350063.
11. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med 2014, 6:222ra218. https://www.ncbi.nlm.nih.gov/pubmed/24500406.
12. High-dose intravenous vitamin C combined with cytotoxic chemotherapy in patients with advanced cancer: a phase I-II clinical trial. PLoS One 2015, 10:e0120228. https://www.ncbi.nlm.nih.gov/pubmed/25848948.
13. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett 1996, 103:183-189. https://www.ncbi.nlm.nih.gov/pubmed/8635156.
14. Combined treatment with vitamin C and methotrexate inhibits triple-negative breast cancer cell growth by increasing H2O2 accumulation and activating caspase-3 and p38 pathways. Oncol Rep 2017, 37:2177-2184. https://www.ncbi.nlm.nih.gov/pubmed/28259996.
15. Effects of low versus high concentrations of water soluble vitamins/dietary ingredients Vitamin C and niacin on colon cancer stem cells (CSCs). Cell Biol Int 2017, 41:1127-1145. https://www.ncbi.nlm.nih.gov/pubmed/28755485.
16. Vitamin C induces apoptosis in AGS cells via production of ROS of mitochondria. Oncol Lett 2016, 12:4270-4276. https://www.ncbi.nlm.nih.gov/pubmed/27895802.
17. High dose concentration administration of ascorbic acid inhibits tumor growth in BALB/C mice implanted with sarcoma 180 cancer cells via the restriction of angiogenesis. J Transl Med 2009, 7:70. https://www.ncbi.nlm.nih.gov/pubmed/19671184.
18. Ascorbate inhibition of angiogenesis in aortic rings ex vivo and subcutaneous Matrigel plugs in vivo. J Angiogenes Res 2010, 2:2. https://www.ncbi.nlm.nih.gov/pubmed/20150992.
19. High-dose vitamin C enhances cancer immunotherapy. Sci Transl Med 2020, 12. https://www.ncbi.nlm.nih.gov/pubmed/32102933.
20. BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis. Cell 2019, 178:330-345 e322. https://www.ncbi.nlm.nih.gov/pubmed/31257027.
21. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med 2015 Oct 7;7(308):308re8. https://pubmed.ncbi.nlm.nih.gov/26446958.
22. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015, 527:186-191. https://www.ncbi.nlm.nih.gov/pubmed/26466563.
23. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am J Physiol Lung Cell Mol Physiol 2012, 303:L20-32. https://www.ncbi.nlm.nih.gov/pubmed/22523283.
24. Can plasma vitamin C predict survival in stage IV colorectal cancer patients? Results of a prospective cohort study. Front Nutr 2023 Mar 6;10:1110405. https://pubmed.ncbi.nlm.nih.gov/36969825.
25. Low Vitamin C Status in Patients with Cancer Is Associated with Patient and Tumor Characteristics. Nutrients 2020, 12https://www.ncbi.nlm.nih.gov/pubmed/32764253.
26. Nutritional status, dietary intake and serum levels of vitamin C upon diagnosis of cancer in children and adolescents. Nutr Hosp 2012, Mar-Apr;27(2):496-503. https://pubmed.ncbi.nlm.nih.gov/22732974.
27. Severe hypovitaminosis C in lung-cancer patients: the utilization of vitamin C in surgical repair and lymphocyte-related host resistance. Br J Cancer 1982, 46:354-367. https://www.ncbi.nlm.nih.gov/pubmed/7126425.
28. Estimated prevalence and predictors of vitamin C deficiency within UK’s low-income population. J Public Health (Oxf) 2008 Dec;30(4):456-60. https://pubmed.ncbi.nlm.nih.gov/18812436.
Astaxanthin
Astaxanthin protective barrier and its ability to improve the health in patients with COVID-19. Iran J Microbiol 2021, 13:434-441. https://www.ncbi.nlm.nih.gov/pubmed/34557270.
Potential of Microalgae Derived Natural Astaxanthin As Adjunctive Supplement in Alleviating Cytokine Storm. SSRN 2020: https://ssrn.com/abstract=3579738.
Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging. Oxid Med Cell Longev 2019, 2019:3849692. https://www.ncbi.nlm.nih.gov/pubmed/31814873.
Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients 2014 Mar 24;6(3):1293-317. https://pubmed.ncbi.nlm.nih.gov/24667135.
Astaxanthin protected against the adverse effects induced by diesel exhaust particulate matter via improving membrane stability and anti-oxidative property. J Hazard Mater 2023 Aug 15;456:131684. https://www.sciencedirect.com/science/article/abs/pii/S0304389423009676.
Effect of carotenoids on gut health and inflammatory status: A systematic review of in vivo animal studies. Crit Rev Food Sci Nutr 2023:1-16. https://www.ncbi.nlm.nih.gov/pubmed/37450500.
CoQ10
Alleviating effects of coenzyme Q10 supplements on biomarkers of inflammation and oxidative stress: results from an umbrella meta-analysis. Front Pharmacol 2023, 14:1191290. https://www.ncbi.nlm.nih.gov/pubmed/37614320.
Randomized crossover clinical trial of coenzyme Q10 and nicotinamide riboside in chronic kidney disease. JCI Insight 2023, 8. https://www.ncbi.nlm.nih.gov/pubmed/37159264.
CANDIDA
1. Antibiotic Resistance Threats in the United States, CDC, December 2019: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.
2. Potent Antifungal Activity of Penta-O-galloyl-β-d-Glucose against Drug-Resistant Candida albicans, Candida auris, and Other Non-albicans Candida Species. ACS Infectious Diseases, 2023; 9 (9): 1685. https://pubs.acs.org/doi/10.1021/acsinfecdis.3c00113.
3. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control 2016 Oct 19;5:35. https://aricjournal.biomedcentral.com/articles/10.1186/s13756-016-0132-5.
4. COVID-19-associated fungal infections. Nat Microbiol 2022, 7:1127-1140. https://www.ncbi.nlm.nih.gov/pubmed/35918423.
5. “Candida auris: a review of recent literature”. UK Health Security Agency, June 14, 2023. https://www.gov.uk/government/consultations/candida-auris-update-to-management-guidance/candida-auris-a-review-of-recent-literature#antifungal-resistance.
6. Muhs A, Lyles JT, Parlet CP, Nelson K, Kavanaugh JS, Horswill AR, Quave CL: Virulence Inhibitors from Brazilian Peppertree Block Quorum Sensing and Abate Dermonecrosis in Skin Infection Models. Sci Rep 2017, 7:42275. https://www.ncbi.nlm.nih.gov/pubmed/28186134.
7. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360:739-742. https://www.ncbi.nlm.nih.gov/pubmed/29773744.
8. Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties. Journal of Functional Foods 2017, 37, 176-189: https://www.sciencedirect.com/science/article/abs/pii/S1756464617304334.
9. Inhibitory effects of 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose on biofilm formation by Staphylococcus aureus. Antimicrob Agents Chemother 2011, 55:1021-1027. https://www.ncbi.nlm.nih.gov/pubmed/21173176.
10. Ultra high-performance liquid chromatography with high-resolution mass spectrometry analysis of African mango (Irvingia gabonensis) seeds, extract, and related dietary supplements. J Agric Food Chem 2012, 60:8703-8709. https://www.ncbi.nlm.nih.gov/pubmed/22880691.
11. Prognostic Trends and Current Challenges in Candidemia: A Comparative Analysis of Two Multicenter Cohorts within the Past Decade. J. Fungi 2023, 9, 468. https://doi.org/10.3390/jof9040468.
TRAUMA – ELAINE WILKINS
- The Scar That Won’t Heal by Patricia Worby, PhD (2015).
- https://www.newmedicineonline.com/rhyme-reason-conflict.
- Johari Window – Joseph Luft and Harry Ingham.
- Nicole Wills article: https://www.firstrand.co.za/perspectives/shellshock-and-snowflakes.
5. IHCAN Discount Offer ‘Trauma Informed Coach accreditation [short practical course for all therapy / disciplines]: https://thechrysaliseffect.mykajabi.com/store/zsN2AFuc.
Link to Free Webinar How to Recognise and Handle Hidden Trauma in Your Clients
Methylation
Association between gene methylation and experiences of historical trauma in Alaska Native peoples. International Journal for Equity in Health, 2023; 22 (1) DOI: 10.1186/s12939-023-01967-7.
MITOCHONDRIA – CHRIS MELETIS
Niacin Cures Systemic NAD(+) Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab 2020, 32:144. https://www.ncbi.nlm.nih.gov/pubmed/32640244
Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One 2012, 7:e42357. https://www.ncbi.nlm.nih.gov/pubmed/22848760.
Therapeutic potential of boosting NAD+ in aging and age-related diseases. Translational Medicine of Aging 2018, 2: 30-37. https://www.sciencedirect.com/science/article/pii/S2468501118300063.
Nicotinamide Riboside Improves Ataxia Scores and Immunoglobulin Levels in Ataxia Telangiectasia. Mov Disord 2021, 36:2951-2957. https://www.ncbi.nlm.nih.gov/pubmed/34515380.
Safety and Tolerability of Nicotinamide Riboside in Heart Failure With Reduced Ejection Fraction. JACC Basic Transl Sci 2022, 7:1183-1196. https://www.ncbi.nlm.nih.gov/pubmed/36644285.
Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults. Sci Rep 2019, 9:9772. https://www.ncbi.nlm.nih.gov/pubmed/31278280.
Herpes simplex virus 1 infection activates poly(ADP-ribose) polymerase and triggers the degradation of poly(ADP-ribose) glycohydrolase. J Virol 2012, 86:8259-8268. https://www.ncbi.nlm.nih.gov/pubmed/22623791.
RESEARCH
Unveiling the Therapeutic Potentials of Mushroom Bioactive Compounds in Alzheimer’s Disease. Foods 2023, 12. https://www.ncbi.nlm.nih.gov/pubmed/37569241.
Severe food allergy reactions are associated with α-tryptase. Journal of Allergy and Clinical Immunology, 2023: https://www.jacionline.org/article/S0091-6749(23)00979-X/fulltext.
A Randomized, Controlled Neuroimaging Trial of Cognitive‐Behavioral Therapy for Fibromyalgia Pain. Arthritis & Rheumatology, 2023, Sept 20: https://acrjournals.onlinelibrary.wiley.com/doi/10.1002/art.42672.
Resistant starch decreases intrahepatic triglycerides in patients with NAFLD via gut microbiome alterations. Cell Metabolism 2023, 35: 9, 1530-47, E8, Sept 5: https://doi.org/10.1016/j.cmet.2023.08.002.
Risk of Inflammatory Bowel Disease in Patients With Atopic Dermatitis. JAMA Dermatology 2023: https://jamanetwork.com/journals/jamadermatology/article-abstract/2808972.
The role of probiotics in the treatment of adult atopic dermatitis: a meta-analysis of randomized controlled trials. J Health Popul Nutr 2022, 41:37. https://www.ncbi.nlm.nih.gov/pubmed/35978397.
FERTILITY
- Infertility . World Health OrganizationWHO: (2010). [Google Scholar]
- Kushnir VA, Barad DH, Albertini DF, Darmon SK, Gleicher N. Systematic review of worldwide trends in assisted reproductive technology 2004–2013. Reprod Biol Endocrinol.(2017) 15:6. 10.1186/s12958-016-0225-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Panth N, Gavarkovs A, Tamez M, Mattei J. The influence of diet on fertility and the implications for public health nutrition in the United States. Front Public Health.(2018) 6:211. 10.3389/fpubh.2018.00211 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Gaskins AJ, Chavarro JE. Diet and fertility: a review. Am J Obstet Gynecol.(2018) 218:379–89. 10.1016/j.ajog.2017.08.010 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Gaskins AJ, Afeiche MC, Wright DL, Toth TL, Williams PL, Gillman MW, et al.. Dietary folate and reproductive success among women undergoing assisted reproduction. Obstet Gynecol.(2014) 124:801–9. 10.1097/AOG.0000000000000477 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Wise LA, Wesselink AK, Tucker KL, Saklani S, Mikkelsen EM, Cueto H, et al.. Dietary fat intake and fecundability in 2 preconception cohort studies. Am J Epidemiol.(2018) 187:60–74. 10.1093/aje/kwx204 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Chiu YH, Chavarro JE, Souter I. Diet and female fertility: doctor, what should I eat?Fertil Steril. (2018) 110:560–9. 10.1016/j.fertnstert.2018.05.027 [PubMed] [CrossRef] [Google Scholar]
- Sanderman EA, Willis SK, Wise LA. Female dietary patterns and outcomes of in vitrofertilization (IVF): a systematic literature review. Nutr J. (2022) 21:5. 10.1186/s12937-021-00757-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Wang L, Tang J, Wang L, Tan F, Song H, Zhou J, et al.. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol.(2021) 236:7966–83. 10.1002/jcp.30468 [PubMed] [CrossRef] [Google Scholar]
- Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Protein intake and ovulatory infertility. Am J Obstet Gynecol.(2008) 198:210.e1–7. 10.1016/j.ajog.2007.06.057 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Zhuo Y, Hua L, Feng B, Jiang X, Li J, Jiang D, et al.. Fibroblast growth factor 21 coordinates adiponectin to mediate the beneficial effects of low-protein diet on primordial follicle reserve. EBioMedicine.(2019) 41:623–35. 10.1016/j.ebiom.2019.02.020 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Jacobsen BK, Jaceldo-Siegl K, Knutsen SF, Fan J, Oda K, Fraser GE. Soy isoflavone intake and the likelihood of ever becoming a mother: the Adventist Health Study-2. Int J Womens Health.(2014) 6:377–84. 10.2147/IJWH.S57137 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. A prospective study of dietary carbohydrate quantity and quality in relation to risk of ovulatory infertility. Eur J Clin Nutr.(2009) 63:78–86. 10.1038/sj.ejcn.1602904 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Rodney R, Celi P, Scott W, Breinhild K, Santos J, Lean I. Effects of nutrition on the fertility of lactating dairy cattle. J Dairy Sci.(2018) 101:5115–33. 10.3168/jds.2017-14064 [PubMed] [CrossRef] [Google Scholar]
- Willis SK, Wise LA, Wesselink AK, Rothman KJ, Mikkelsen EM, Tucker KL, et al.. Glycemic load, dietary fiber, and added sugar and fecundability in 2 preconception cohorts. Am J Clin Nutr.(2020) 112:27–38. 10.1093/ajcn/nqz312 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Gaskins AJ, Mumford SL, Zhang C, Wactawski-Wende J, Hovey KM, Whitcomb BW, et al.. Effect of daily fiber intake on reproductive function: the BioCycle Study. Am J Clin Nutr.(2009) 90:1061–9. 10.3945/ajcn.2009.27990 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Nehra D, Le HD, Fallon EM, Carlson SJ, Woods D, White YA, et al.. Prolonging the female reproductive lifespan and improving egg quality with dietary omega-3 fatty acids. Aging Cell.(2012) 11:1046–54. 10.1111/acel.12006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Hammiche F, Vujkovic M, Wijburg W, de Vries JH, Macklon NS, Laven JS, et al.. Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo morphology. Fertil Steril.(2011) 95:1820–3. 10.1016/j.fertnstert.2010.11.021 [PubMed] [CrossRef] [Google Scholar]
- Mumford SL, Chavarro JE, Zhang C, Perkins NJ, Sjaarda LA, Pollack AZ, et al.. Dietary fat intake and reproductive hormone concentrations and ovulation in regularly menstruating women. Am J Clin Nutr.(2016) 103:868–77. 10.3945/ajcn.115.119321 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Dietary fatty acid intakes and the risk of ovulatory infertility. Am J Clin Nutr.(2007) 85:231–7. 10.1093/ajcn/85.1.231 [PubMed] [CrossRef] [Google Scholar]
- Lefevre M, Lovejoy JC, Smith SR, Delany JP, Champagne C, Most MM, et al.. Comparison of the acute response to meals enriched with cis- or trans-fatty acids on glucose and lipids in overweight individuals with differing FABP2 genotypes. Metabolism.(2005) 54:1652–8. 10.1016/j.metabol.2005.06.015 [PubMed] [CrossRef] [Google Scholar]
- Baer DJ, Judd JT, Clevidence BA, Tracy RP. Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am J Clin Nutr.(2004) 79:969–73. 10.1093/ajcn/79.6.969 [PubMed] [CrossRef] [Google Scholar]
- Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Use of multivitamins, intake of B vitamins, and risk of ovulatory infertility. Fertil Steril.(2008) 89:668–76. 10.1016/j.fertnstert.2007.03.089 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Gaskins AJ, Mumford SL, Chavarro JE, Zhang C, Pollack AZ, Wactawski-Wende J, et al.. The impact of dietary folate intake on reproductive function in premenopausal women: a prospective cohort study. PLoS One.(2012) 7:e46276. 10.1371/journal.pone.0046276 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Kwiecinksi GG, Petrie GI, DeLuca HF. 1,25-Dihydroxyvitamin D3 restores fertility of vitamin D-deficient female rats. Am J Physiol.(1989) 256:E483–7. 10.1152/ajpendo.1989.256.4.E483 [PubMed] [CrossRef] [Google Scholar]
- Mumford SL, Silver R, Sjaarda LA, Galai N, Stanford J, Lynch A, et al.. Vitamin D and Ovarian Reserve and Fecundability among Women with Proven Fecundity. FASEB J.(2016) 30:290.6. [Google Scholar]
- Møller UK, Streym S, Heickendorff L, Mosekilde L, Rejnmark L. Effects of 25OHD concentrations on chances of pregnancy and pregnancy outcomes: a cohort study in healthy Danish women. Eur J Clin Nutr.(2012) 66:862–8. 10.1038/ejcn.2012.18 [PubMed] [CrossRef] [Google Scholar]
- Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Iron intake and risk of ovulatory infertility. Obstet Gynecol.(2006) 108:1145–52. 10.1097/01.AOG.0000238333.37423.ab [PubMed] [CrossRef] [Google Scholar]
- Swenerton H, Hurley LS. Severe zinc deficiency in male and female rats. J Nutr.(1968) 95:8–18. 10.1093/jn/95.1.8 [PubMed] [CrossRef] [Google Scholar]
- Swenerton H, Hurley LS. Zinc deficiency in rhesus and bonnet monkeys, including effects on reproduction. J Nutr.(1980) 110:575–83. 10.1093/jn/110.3.575 [PubMed] [CrossRef] [Google Scholar]
- Grieger JA, Grzeskowiak LE, Wilson RL, Bianco-Miotto T, Leemaqz SY, Jankovic-Karasoulos T, et al.. Maternal selenium, copper and zinc concentrations in early pregnancy, and the association with fertility. Nutrients.(2019) 11:1609. 10.3390/nu11071609 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Diet and lifestyle in the prevention of ovulatory disorder infertility. Obstet Gynecol.(2007) 110:1050–8. 10.1097/01.AOG.0000287293.25465.e1 [PubMed] [CrossRef] [Google Scholar]
- Kazemi M, Jarrett BY, Vanden Brink H, Lin AW, Hoeger KM, Spandorfer SD, et al.. Obesity, insulin resistance, and hyperandrogenism mediate the link between poor diet quality and ovarian dysmorphology in reproductive-aged women. Nutrients.(2020) 12:1953. 10.3390/nu12071953 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Xu J, McGee WK, Bishop CV, Park BS, Cameron JL, Zelinski MB, et al.. Exposure of female macaques to Western-style diet with or without chronic T in vivoalters secondary follicle function during encapsulated 3-dimensional culture. Endocrinology. (2015) 156:1133–42. 10.1210/en.2014-1711 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Braga DP, Halpern G, Setti AS, Figueira RC, Iaconelli A, Jr, Borges E, Jr. The impact of food intake and social habits on embryo quality and the likelihood of blastocyst formation. Reprod Biomed Online. (2015) 31:30–8. 10.1016/j.rbmo.2015.03.007 [PubMed] [CrossRef] [Google Scholar]
- Nassan FL, Chiu Y-H, Vanegas JC, Gaskins AJ, Williams PL, Ford JB, et al.. Intake of protein-rich foods in relation to outcomes of infertility treatment with assisted reproductive technologies. Am J Clin Nutr.(2018) 108:1104–12. 10.1093/ajcn/nqy185 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Vanegas JC, Afeiche MC, Gaskins AJ, Mínguez-Alarcón L, Williams PL, Wright DL, et al.. Soy food intake and treatment outcomes of women undergoing assisted reproductive technology. Fertil Steril.(2015) 103:749–55.e2. 10.1016/j.fertnstert.2014.12.104 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Shahin AY, Ismail AM, Zahran KM, Makhlouf AM. Adding phytoestrogens to clomiphene induction in unexplained infertility patients–a randomized trial. Reprod Biomed Online.(2008) 16:580–8. 10.1016/S1472-6483(10)60465-8 [PubMed] [CrossRef] [Google Scholar]
- Unfer V, Casini ML, Costabile L, Mignosa M, Gerli S, Di Renzo GC. High dose of phytoestrogens can reverse the antiestrogenic effects of clomiphene citrate on the endometrium in patients undergoing intrauterine insemination: a randomized trial. J Soc Gynecol Investig.(2004) 11:323–8. 10.1016/j.jsgi.2003.12.007 [PubMed] [CrossRef] [Google Scholar]
- Chavarro JE, Mínguez-Alarcón L, Chiu Y-H, Gaskins AJ, Souter I, Williams PL, et al.. Soy intake modifies the relation between Urinary Bisphenol A concentrations and pregnancy outcomes among women undergoing assisted reproduction. J Clin Endocrinol Metab.(2016) 101:1082–90. 10.1210/jc.2015-3473 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Wesselink AK, Hatch EE, Mikkelsen EM, Trolle E, Willis SK, McCann SE, et al.. Dietary phytoestrogen intakes of adult women are not strongly related to fecundability in 2 preconception cohort studies. J Nutr.(2020) 150:1240–51. 10.1093/jn/nxz335 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Unfer V, Casini ML, Gerli S, Costabile L, Mignosa M, Di Renzo GC. Phytoestrogens may improve the pregnancy rate in in vitrofertilization-embryo transfer cycles: a prospective, controlled, randomized trial. Fertil Steril. (2004) 82:1509–13. 10.1016/j.fertnstert.2004.07.934 [PubMed] [CrossRef] [Google Scholar]
- Becker GF, Passos EP, Moulin CC. Short-term effects of a hypocaloric diet with low glycemic index and low glycemic load on body adiposity, metabolic variables, ghrelin, leptin, and pregnancy rate in overweight and obese infertile women: a randomized controlled trial. Am J Clin Nutr.(2015) 102:1365–72. 10.3945/ajcn.115.117200 [PubMed] [CrossRef] [Google Scholar]
- Noli SA, Ferrari S, Ricci E, Reschini M, Cipriani S, Dallagiovanna C, et al.. The role of diet in unexpected poor response to ovarian stimulation: a cross-sectional study. Reprod Biomed Online.(2020) 41:874–83. 10.1016/j.rbmo.2020.07.011 [PubMed] [CrossRef] [Google Scholar]
- Noli SA, Ricci E, Cipriani S, Ferrari S, Castiglioni M, La Vecchia I, et al.. Dietary carbohydrate intake, dietary glycemic load and outcomes of in vitrofertilization: findings from an observational Italian cohort study. Nutrients. (2020) 12:1568. 10.3390/nu12061568 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Moran LJ, Tsagareli V, Noakes M, Norman R. Altered preconception fatty acid intake is associated with improved pregnancy rates in overweight and obese women undertaking in vitrofertilisation. Nutrients. (2016) 8:10. 10.3390/nu8010010 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Chiu YH, Karmon AE, Gaskins AJ, Arvizu M, Williams PL, Souter I, et al.. Serum omega-3 fatty acids and treatment outcomes among women undergoing assisted reproduction. Hum Reprod.(2018) 33:156–65. 10.1093/humrep/dex335 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Kermack AJ, Lowen P, Wellstead SJ, Fisk HL, Montag M, Cheong Y, et al.. Effect of a 6-week “Mediterranean” dietary intervention on in vitro human embryo development: the Preconception Dietary Supplements in Assisted Reproduction double-blinded randomized controlled trial. Fertil Steril.(2020) 113:260–9. 10.1016/j.fertnstert.2019.09.041 [PubMed] [CrossRef] [Google Scholar]
- Jungheim ES, Macones GA, Odem RR, Patterson BW, Moley KH. Elevated serum α-linolenic acid levels are associated with decreased chance of pregnancy after in vitrofertilization. Fertil Steril. (2011) 96:880–3. 10.1016/j.fertnstert.2011.07.1115 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Jungheim ES, Macones GA, Odem RR, Patterson BW, Lanzendorf SE, Ratts VS, et al.. Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitrofertilization. Fertil Steril. (2011) 95:1970–4. 10.1016/j.fertnstert.2011.01.154 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Eskew AM, Wormer KC, Matthews ML, Norton HJ, Papadakis MA, Hurst BS. The association between fatty acid index and in vitrofertilization outcomes. J Assist Reprod Genet. (2017) 34:1627–32. 10.1007/s10815-017-1032-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Gaskins AJ, Nassan FL, Chiu Y-H, Arvizu M, Williams PL, Keller MG, et al.. Dietary patterns and outcomes of assisted reproduction. Am J Obstet Gynecol.(2019) 220:567.e1–.e18. 10.1016/j.ajog.2019.02.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Szymański W, Kazdepka-Ziemińska A. [Effect of homocysteine concentration in follicular fluid on a degree of oocyte maturity]. Ginekol Pol.(2003) 74:1392–6. [PubMed] [Google Scholar]
- Ozkan S, Jindal S, Greenseid K, Shu J, Zeitlian G, Hickmon C, et al.. Replete vitamin D stores predict reproductive success following in vitrofertilization. Fertil Steril. (2010) 94:1314–9. 10.1016/j.fertnstert.2009.05.019 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Garbedian K, Boggild M, Moody J, Liu KE. Effect of vitamin D status on clinical pregnancy rates following in vitrofertilization. CMAJ Open. (2013) 1:E77–82. 10.9778/cmajo.20120032 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Rudick BJ, Ingles SA, Chung K, Stanczyk FZ, Paulson RJ, Bendikson KA. Influence of vitamin D levels on in vitrofertilization outcomes in donor-recipient cycles. Fertil Steril. (2014) 101:447–52. 10.1016/j.fertnstert.2013.10.008 [PubMed] [CrossRef] [Google Scholar]
- Polyzos NP, Anckaert E, Guzman L, Schiettecatte J, Van Landuyt L, Camus M, et al.. Vitamin D deficiency and pregnancy rates in women undergoing single embryo, blastocyst stage, transfer (SET) for IVF/ICSI. Hum Reprod.(2014) 29:2032–40. 10.1093/humrep/deu156 [PubMed] [CrossRef] [Google Scholar]
- Aflatoonian A, Arabjahvani F, Eftekhar M, Sayadi M. Effect of vitamin D insufficiency treatment on fertility outcomes in frozen-thawed embryo transfer cycles: a randomized clinical trial. Iran J Reprod Med.(2014) 12:595–600. 10.18502/ijrm.v12i9.582 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Aleyasin A, Hosseini MA, Mahdavi A, Safdarian L, Fallahi P, Mohajeri MR, et al.. Predictive value of the level of vitamin D in follicular fluid on the outcome of assisted reproductive technology. Eur J Obstet Gynecol Reprod Biol.(2011) 159:132–7. 10.1016/j.ejogrb.2011.07.006 [PubMed] [CrossRef] [Google Scholar]
- Neville G, Martyn F, Kilbane M, O’Riordan M, Wingfield M, McKenna M, et al.. Vitamin D status and fertility outcomes during winter among couples undergoing in vitrofertilization/intracytoplasmic sperm injection. Int J Gynaecol Obstet. (2016) 135:172–6. 10.1016/j.ijgo.2016.04.018 [PubMed] [CrossRef] [Google Scholar]
- Sun N, Xu C, Zhang Q, Lu X, Li W. Impact of multivitamin supplementation on trace element levels in serum and follicular fluid of women undergoing in vitrofertilisation. J Develop Med. (2013) 1:74–7. [Google Scholar]
- Ingle ME, Bloom MS, Parsons PJ, Steuerwald AJ, Kruger P, Fujimoto VY. Associations between IVF outcomes and essential trace elements measured in follicular fluid and urine: a pilot study. J Assist Reprod Genet.(2017) 34:253–61. 10.1007/s10815-016-0853-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Özkaya MO, Naziroglu M, Barak C, Berkkanoglu M. Effects of multivitamin/mineral supplementation on trace element levels in serum and follicular fluid of women undergoing in vitrofertilization (IVF). Biol Trace Elem Res. (2011) 139:1–9. 10.1007/s12011-010-8637-x [PubMed] [CrossRef] [Google Scholar]
- Ng SC, Karunanithy R, Edirisinghe WR, Roy AC, Wong PC, Ratnam SS. Human follicular fluid levels of calcium, copper and zinc. Gynecol Obstet Invest.(1987) 23:129–32. 10.1159/000298848 [PubMed] [CrossRef] [Google Scholar]
- Vujkovic M, de Vries JH, Lindemans J, Macklon NS, van der Spek PJ, Steegers EA, et al.. The preconception Mediterranean dietary pattern in couples undergoing in vitrofertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy. Fertil Steril. (2010) 94:2096–101. 10.1016/j.fertnstert.2009.12.079 [PubMed] [CrossRef] [Google Scholar]
- Karayiannis D, Kontogianni MD, Mendorou C, Mastrominas M, Yiannakouris N. Adherence to the Mediterranean diet and IVF success rate among non-obese women attempting fertility. Hum Reprod.(2018) 33:494–502. 10.1093/humrep/dey003 [PubMed] [CrossRef] [Google Scholar]
- Sun H, Lin Y, Lin D, Zou C, Zou X, Fu L, et al.. Mediterranean diet improves embryo yield in IVF: a prospective cohort study. Rep Biol Endocrinol.(2019) 17:73. 10.1186/s12958-019-0520-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Ruder EH, Hartman TJ, Reindollar RH, Goldman MB. Female dietary antioxidant intake and time to pregnancy among couples treated for unexplained infertility. Fertil Steril.(2014) 101:759–66. 10.1016/j.fertnstert.2013.11.008 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Ricci E, Bravi F, Noli S, Somigliana E, Cipriani S, Castiglioni M, et al.. Mediterranean diet and outcomes of assisted reproduction: an Italian cohort study. Am J Obstet Gynecol.(2019) 221:627.e1–14. 10.1016/j.ajog.2019.07.011 [PubMed] [CrossRef] [Google Scholar]
- Ravisankar S, Ting AY, Murphy MJ, Redmayne N, Wang D, McArthur CA, et al.. Short-term Western-style diet negatively impacts reproductive outcomes in primates. JCI Insight.(2021) 6:e138312. 10.1172/jci.insight.138312 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Hohos NM, Elliott EM, Cho KJ, Lin IS, Rudolph MC, Skaznik-Wikiel ME. High-fat diet-induced dysregulation of ovarian gene expression is restored with chronic omega-3 fatty acid supplementation. Mol Cell Endocrinol.(2020) 499:110615. 10.1016/j.mce.2019.110615 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Hohos NM, Cho KJ, Swindle DC, Skaznik-Wikiel ME. High-fat diet exposure, regardless of induction of obesity, is associated with altered expression of genes critical to normal ovulatory function. Mol Cell Endocrinol.(2018) 470:199–207. 10.1016/j.mce.2017.10.016 [PubMed] [CrossRef] [Google Scholar]
- Ruebel ML, Cotter M, Sims CR, Moutos DM, Badger TM, Cleves MA, et al.. Obesity modulates inflammation and lipid metabolism oocyte gene expression: a single-cell transcriptome perspective. J Clin Endocrinol Metab.(2017) 102:2029–38. 10.1210/jc.2016-3524 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Brookheart RT, Swearingen AR, Collins CA, Cline LM, Duncan JG. High-sucrose-induced maternal obesity disrupts ovarian function and decreases fertility in Drosophila melanogaster. Biochim Biophysica Acta Mol Basis Dis.(2017) 1863:1255–63. 10.1016/j.bbadis.2017.03.014 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Sangalli JR, Sampaio RV, Del Collado M, da Silveira JC, De Bem THC, Perecin F, et al.. Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on H3K9ac in bovine cells, oocytes and embryos. Sci Rep.(2018) 8:17219. 10.1038/s41598-018-35527-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Harreiter J, Simmons D, Desoye G, Corcoy R, Adelantado JM, Devlieger R, et al.. Nutritional lifestyle intervention in obese pregnant women, including lower carbohydrate intake, is associated with increased maternal free fatty acids, 3-β-Hydroxybutyrate, and fasting glucose concentrations: a secondary factorial analysis of the European multicenter, randomized controlled DALI lifestyle intervention trial. Diabetes Care.(2019) 42:1380–9. 10.2337/dc19-0418 [PubMed] [CrossRef] [Google Scholar]
- Nagy RA, Homminga I, Jia C, Liu F, Anderson JLC, Hoek A, et al.. Trimethylamine-N-oxide is present in human follicular fluid and is a negative predictor of embryo quality. Hum Reprod.(2020) 35:81–8. 10.1093/humrep/dez224 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Komiya S, Naito Y, Okada H, Matsuo Y, Hirota K, Takagi T, et al.. Characterizing the gut microbiota in females with infertility and preliminary results of a water-soluble dietary fiber intervention study. J Clin Biochem Nutr.(2020) 67:105–11. 10.3164/jcbn.20-53 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Dastorani M, Aghadavod E, Mirhosseini N, Foroozanfard F, Zadeh Modarres S, Amiri Siavashani M, et al.. The effects of vitamin D supplementation on metabolic profiles and gene expression of insulin and lipid metabolism in infertile polycystic ovary syndrome candidates for in vitrofertilization. Reprod Biol Endocrinol. (2018) 16:94. 10.1186/s12958-018-0413-3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Makieva S, Reschini M, Ferrari S, Bonesi F, Polledri E, Fustinoni S, et al.. Oral Vitamin D supplementation impacts gene expression in granulosa cells in women undergoing IVF. Hum Reprod.(2021) 36:130–44. 10.1093/humrep/deaa262 [PubMed] [CrossRef] [Google Scholar]
- Smith EM, Hoi JT, Eissenberg JC, Shoemaker JD, Neckameyer WS, Ilvarsonn AM, et al.. Feeding Drosophila a biotin-deficient diet for multiple generations increases stress resistance and lifespan and alters gene expression and histone biotinylation patterns. J Nutr.(2007) 137:2006–12. 10.1093/jn/137.9.2006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Ikeda S, Sugimoto M, Kume S. The RPMI-1640 vitamin mixture promotes bovine blastocyst development in vitroand downregulates gene expression of TXNIP with epigenetic modification of associated histones. J Dev Orig Health Dis. (2018) 9:87–94. 10.1017/S2040174417000563 [PubMed] [CrossRef] [Google Scholar]
- Nelen WLDM, Blom HJ, Thomas CMG, Steegers EAP, Boers GHJ, Eskes TKAB. Methylenetetrahydrofolate reductase polymorphism affects the change in homocysteine and folate concentrations resulting from low dose folic acid supplementation in women with unexplained recurrent miscarriages. J Nutr.(1998) 128:1336–41. 10.1093/jn/128.8.1336 [PubMed] [CrossRef] [Google Scholar]
- Rahimi S, Martel J, Karahan G, Angle C, Behan NA, Chan D, et al.. Moderate maternal folic acid supplementation ameliorates adverse embryonic and epigenetic outcomes associated with assisted reproduction in a mouse model. Hum Reprod.(2019) 34:851–62. 10.1093/humrep/dez036 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Heidar Z, Hamzepour N, Zadeh Modarres S, Mirzamoradi M, Aghadavod E, Pourhanifeh MH, et al.. The effects of selenium supplementation on clinical symptoms and gene expression related to inflammation and vascular endothelial growth factor in infertile women candidate for in vitrofertilization. Biol Trace Elem Res. (2020) 193:319–25. 10.1007/s12011-019-01715-5 [PubMed] [CrossRef] [Google Scholar]
- Zadeh Modarres S, Heidar Z, Foroozanfard F, Rahmati Z, Aghadavod E, Asemi Z. The effects of selenium supplementation on gene expression related to insulin and lipid in infertile polycystic ovary syndrome women candidate for in vitrofertilization: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res. (2018) 183:218–25. 10.1007/s12011-017-1148-2 [PubMed] [CrossRef] [Google Scholar]
- Tian X, Diaz FJ. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev Biol.(2013) 376:51–61. 10.1016/j.ydbio.2013.01.015 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Gannon MC, Nuttall FQ, Neil BJ, Westphal SA. The insulin and glucose responses to meals of glucose plus various proteins in type II diabetic subjects. Metabolism.(1988) 37:1081–8. 10.1016/0026-0495(88)90072-8 [PubMed] [CrossRef] [Google Scholar]
- Hubbard R, Kosch CL, Sanchez A, Sabate J, Berk L, Shavlik G. Effect of dietary protein on serum insulin and glucagon levels in hyper- and normocholesterolemic men. Atherosclerosis.(1989) 76:55–61. 10.1016/0021-9150(89)90193-7 [PubMed] [CrossRef] [Google Scholar]
- Holmes MD, Pollak MN, Willett WC, Hankinson SE. Dietary correlates of plasma insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations. Cancer Epidemiol Biomarkers Prev.(2002) 11:852–61. [PubMed] [Google Scholar]
- Meza-Herrera CA, Hallford DM, Ortiz JA, Cuevas RA, Sanchez JM, Salinas H, et al.. Body condition and protein supplementation positively affect periovulatory ovarian activity by non LH-mediated pathways in goats. Anim Reprod Sci.(2008) 106:412–20. 10.1016/j.anireprosci.2007.06.004 [PubMed] [CrossRef] [Google Scholar]
- Armstrong DG, McEvoy TG, Baxter G, Robinson JJ, Hogg CO, Woad KJ, et al.. Effect of dietary energy and protein on bovine follicular dynamics and embryo production in vitro: associations with the ovarian insulin-like growth factor system. Biol Reprod.(2001) 64:1624–32. 10.1095/biolreprod64.6.1624 [PubMed] [CrossRef] [Google Scholar]
- Jeong SH, Kang D, Lim MW, Kang CS, Sung HJ. Risk assessment of growth hormones and antimicrobial residues in meat. Toxicol Res.(2010) 26:301–13. 10.5487/TR.2010.26.4.301 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Vandermeersch G, Lourenço HM, Alvarez-Muñoz D, Cunha S, Diogène J, Cano-Sancho G, et al.. Environmental contaminants of emerging concern in seafood–European database on contaminant levels. Environ Res.(2015) 143:29–45. 10.1016/j.envres.2015.06.011 [PubMed] [CrossRef] [Google Scholar]
- Seppen J. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase. Toxicol Appl Pharmacol.(2012) 264:335–42. 10.1016/j.taap.2012.09.013 [PubMed] [CrossRef] [Google Scholar]
- Setchell KD, Gosselin SJ, Welsh MB, Johnston JO, Balistreri WF, Kramer LW, et al.. Dietary estrogens–a probable cause of infertility and liver disease in captive cheetahs. Gastroenterology.(1987) 93:225–33. 10.1016/0016-5085(87)91006-7 [PubMed] [CrossRef] [Google Scholar]
- Bakaloudi DR, Halloran A, Rippin HL, Oikonomidou AC, Dardavesis TI, Williams J, et al.. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin Nutr.(2021) 40:3503–21. 10.1016/j.clnu.2020.11.035 [PubMed] [CrossRef] [Google Scholar]
- Benham AJ, Gallegos D, Hanna KL, Hannan-Jones MT. Intake of vitamin B12 and other characteristics of women of reproductive age on a vegan diet in Australia. Public Health Nutr.(2021) 24:4397–407. 10.1017/S1368980021001695 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- McGrice M, Porter J. The effect of low carbohydrate diets on fertility hormones and outcomes in overweight and obese women: a systematic review. Nutrients.(2017) 9:204. 10.3390/nu9030204 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Augustin LS, Kendall CW, Jenkins DJ, Willett WC, Astrup A, Barclay AW, et al.. Glycemic index, glycemic load and glycemic response: an International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis.(2015) 25:795–815. 10.1016/j.numecd.2015.05.005 [PubMed] [CrossRef] [Google Scholar]
- Kaaks R, Lukanova A. Energy balance and cancer: the role of insulin and insulin-like growth factor-I. Proc Nutr Soc.(2001) 60:91–106. 10.1079/PNS200070 [PubMed] [CrossRef] [Google Scholar]
- Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev.(1997) 18:774–800. 10.1210/er.18.6.774 [PubMed] [CrossRef] [Google Scholar]
- Chavarro JE, Rich-Edwards JW, Rosner B, Willett WC. A prospective study of dairy foods intake and anovulatory infertility. Hum Reprod.(2007) 22:1340–7. 10.1093/humrep/dem019 [PubMed] [CrossRef] [Google Scholar]
- Sadowska J, Dudzińska W, Skotnicka E, Sielatycka K, Daniel I. The impact of a diet containing sucrose and systematically repeated starvation on the oxidative status of the uterus and ovary of rats. Nutrients.(2019) 11:1544. 10.3390/nu11071544 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe.(2018) 23:705–15. 10.1016/j.chom.2018.05.012 [PubMed] [CrossRef] [Google Scholar]
- Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim.(2009) 44:50–8. 10.1111/j.1439-0531.2009.01402.x [PubMed] [CrossRef] [Google Scholar]
- Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med.(2001) 345:1400–8. 10.1056/NEJMra000763 [PubMed] [CrossRef] [Google Scholar]
- Silvestris E, Lovero D, Palmirotta R. Nutrition and female fertility: an interdependent correlation. Front Endocrinol.(2019) 10:346. 10.3389/fendo.2019.00346 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Hughes J, Kwong WY, Li D, Salter AM, Lea RG, Sinclair KD. Effects of omega-3 and−6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism. Reproduction.(2011) 141:105–18. 10.1530/REP-10-0337 [PubMed] [CrossRef] [Google Scholar]
- Kim PY, Zhong M, Kim YS, Sanborn BM, Allen KG. Long chain polyunsaturated fatty acids alter oxytocin signaling and receptor density in cultured pregnant human myometrial smooth muscle cells. PLoS ONE.(2012) 7:e41708. 10.1371/journal.pone.0041708 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Wonnacott KE, Kwong WY, Hughes J, Salter AM, Lea RG, Garnsworthy PC, et al.. Dietary omega-3 and−6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction.(2010) 139:57–69. 10.1530/REP-09-0219 [PubMed] [CrossRef] [Google Scholar]
- Wathes DC, Abayasekara DR, Aitken RJ. Polyunsaturated fatty acids in male and female reproduction. Biol Reprod.(2007) 77:190–201. 10.1095/biolreprod.107.060558 [PubMed] [CrossRef] [Google Scholar]
- Abayasekara DR, Wathes DC. Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility. Prostaglandins Leukot Essent Fatty Acids.(1999) 61:275–87. 10.1054/plef.1999.0101 [PubMed] [CrossRef] [Google Scholar]
- Belani M, Purohit N, Pillai P, Gupta S, Gupta S. Modulation of steroidogenic pathway in rat granulosa cells with subclinical Cd exposure and insulin resistance: an impact on female fertility. Biomed Res Int.(2014) 2014:460251. 10.1155/2014/460251 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Saravanan N, Haseeb A, Ehtesham NZ, Ghafoorunissa. Differential effects of dietary saturated and trans-fatty acids on expression of genes associated with insulin sensitivity in rat adipose tissue. Eur J Endocrinol.(2005) 153:159–65. 10.1530/eje.1.01946 [PubMed] [CrossRef] [Google Scholar]
- Komar CM, Braissant O, Wahli W, Curry TE, Jr. Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period. Endocrinology. (2001) 142:4831–8. 10.1210/endo.142.11.8429 [PubMed] [CrossRef] [Google Scholar]
- Kurzynska A, Bogacki M, Chojnowska K, Bogacka I. Peroxisome proliferator activated receptor ligands affect progesterone and 17β-estradiol secretion by porcine corpus luteum during early pregnancy. J Physiol Pharmacol.(2014) 65:709–17. [PubMed] [Google Scholar]
- Banerjee J, Komar CM. Effects of luteinizing hormone on peroxisome proliferator-activated receptor gamma in the rat ovary before and after the gonadotropin surge. Reproduction.(2006) 131:93–101. 10.1530/rep.1.00730 [PubMed] [CrossRef] [Google Scholar]
- Schaefer E, Nock D. The impact of preconceptional multiple-micronutrient supplementation on female fertility. Clin Med Insights Womens Health.(2019) 12:1179562X19843868. 10.1177/1179562X19843868 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Ebisch IM, Thomas CM, Peters WH, Braat DD, Steegers-Theunissen RP. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum Reprod Update.(2007) 13:163–74. 10.1093/humupd/dml054 [PubMed] [CrossRef] [Google Scholar]
- Parikh G, Varadinova M, Suwandhi P, Araki T, Rosenwaks Z, Poretsky L, et al.. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Horm Metab Res.(2010) 42:754–7. 10.1055/s-0030-1262837 [PubMed] [CrossRef] [Google Scholar]
- Agic A, Xu H, Altgassen C, Noack F, Wolfler MM, Diedrich K, et al.. Relative expression of 1,25-dihydroxyvitamin D3 receptor, vitamin D 1 alpha-hydroxylase, vitamin D 24-hydroxylase, and vitamin D 25-hydroxylase in endometriosis and gynecologic cancers. Reprod Sci.(2007) 14:486–97. 10.1177/1933719107304565 [PubMed] [CrossRef] [Google Scholar]
- Tanamura A, Nomura S, Kurauchi O, Furui T, Mizutani S, Tomoda Y. Purification and characterization of 1,25(OH)2D3 receptor from human placenta. J Obstet Gynaecol.(1995) 21:631–9. 10.1111/j.1447-0756.1995.tb00923.x [PubMed] [CrossRef] [Google Scholar]
- Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol.(2002) 13:3–9. 10.1097/00041433-200202000-00002 [PubMed] [CrossRef] [Google Scholar]
- Chiu Y-H, Williams PL, Gillman MW, Gaskins AJ, Mínguez-Alarcón L, Souter I, et al.. Association between pesticide residue intake from consumption of fruits and vegetables and pregnancy outcomes among women undergoing infertility treatment with assisted reproductive technology. JAMA Intern Med.(2018) 178:17–26. 10.1001/jamainternmed.2017.5038 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Hood RB, Liang D, Chiu Y-H, Sandoval-Insausti H, Chavarro JE, Jones D, et al.. Pesticide residue intake from fruits and vegetables and alterations in the serum metabolome of women undergoing infertility treatment. Environ Int.(2022) 160:107061. 10.1016/j.envint.2021.107061 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Nazni P. Association of western diet & lifestyle with decreased fertility. Indian J Med Res.(2014) 140:S78–81. [PMC free article] [PubMed] [Google Scholar]
- Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, et al.. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc.(2010) 110:911–16.e12. 10.1016/j.jada.2010.03.018 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Jinno M, Takeuchi M, Watanabe A, Teruya K, Hirohama J, Eguchi N, et al.. Advanced glycation end-products accumulation compromises embryonic development and achievement of pregnancy by assisted reproductive technology. Hum Reprod.(2011) 26:604–10. 10.1093/humrep/deq388 [PubMed] [CrossRef] [Google Scholar]
- Thomas M, Baynes J, Thorpe S, Cooper M. The role of AGEs and AGE inhibitors in diabetic cardiovascular disease. Curr Drug Targets.(2005) 6:453–74. 10.2174/1389450054021873 [PubMed] [CrossRef] [Google Scholar]
- Gaskins AJ, Chiu YH, Williams PL, Keller MG, Toth TL, Hauser R, et al.. Maternal whole grain intake and outcomes of in vitrofertilization. Fertil Steril. (2016) 105:1503–10.e4. 10.1016/j.fertnstert.2016.02.015 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Mirabi P, Chaichi MJ, Esmaeilzadeh S, Ali Jorsaraei SG, Bijani A, Ehsani M, et al.. The role of fatty acids on ICSI outcomes: a prospective cohort study. Lipids Health Dis.(2017) 16:18. 10.1186/s12944-016-0396-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Simopoulos AP. Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Exp Biol Med.(2010) 235:785–95. 10.1258/ebm.2010.009298 [PubMed] [CrossRef] [Google Scholar]
- Chu J, Gallos I, Tobias A, Tan B, Eapen A, Coomarasamy A. Vitamin D and assisted reproductive treatment outcome: a systematic review and meta-analysis. Hum Reprod.(2018) 33:65–80. 10.1093/humrep/dex326 [PubMed] [CrossRef] [Google Scholar]
- Voulgaris N, Papanastasiou L, Piaditis G, Angelousi A, Kaltsas G, Mastorakos G, et al.. Vitamin D and aspects of female fertility. Hormones.(2017) 16:5–21. 10.14310/horm.2002.1715 [PubMed] [CrossRef] [Google Scholar]
- Twigt JM, Bolhuis MEC, Steegers EAP, Hammiche F, van Inzen WG, Laven JSE, et al.. The preconception diet is associated with the chance of ongoing pregnancy in women undergoing IVF/ICSI treatment. Hum Reprod.(2012) 27:2526–31. 10.1093/humrep/des157 [PubMed] [CrossRef] [Google Scholar]
- Hammiche F, Laven JS, van Mil N, de Cock M, de Vries JH, Lindemans J, et al.. Tailored preconceptional dietary and lifestyle counselling in a tertiary outpatient clinic in The Netherlands. Hum Reprod.(2011) 26:2432–41. 10.1093/humrep/der225 [PubMed] [CrossRef] [Google Scholar]
- Mena GP, Mielke GI, Brown WJ. The effect of physical activity on reproductive health outcomes in young women: a systematic review and meta-analysis. Hum Reprod Update.(2019) 25:542–64. 10.1093/humupd/dmz013 [PubMed] [CrossRef] [Google Scholar]
- Hakimi O, Cameron LC. Effect of exercise on ovulation: a systematic review. Sports Med.(2017) 47:1555–67. 10.1007/s40279-016-0669-8 [PubMed] [CrossRef] [Google Scholar]
- Garruti G, Depalo R, De Angelis M. Weighing the impact of diet and lifestyle on female reproductive function. Curr Med Chem.(2019) 26:3584–92. 10.2174/0929867324666170518101008 [PubMed] [CrossRef] [Google Scholar]
- Orio F, Muscogiuri G, Ascione A, Marciano F, Volpe A, La Sala G, et al.. Effects of physical exercise on the female reproductive system. Minerva Endocrinol.(2013) 38:305–19. [PubMed] [Google Scholar]
- Müller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Genet.(2003) 4:315–22. 10.1038/nrg1047 [PubMed] [CrossRef] [Google Scholar]
- Bouchard C, Ordovas JM. Fundamentals of nutrigenetics and nutrigenomics. Prog Mol Biol Transl Sci.(2012) 108:1–15. 10.1016/B978-0-12-398397-8.00001-0 [PubMed] [CrossRef] [Google Scholar]
- Dawson KA. Nutrigenomics: Feeding the genes for improved fertility. Anim Reprod Sci.(2006) 96:312–22. 10.1016/j.anireprosci.2006.08.009 [PubMed] [CrossRef] [Google Scholar]
- Patel B, Parets S, Akana M, Kellogg G, Jansen M, Chang C, et al.. Comprehensive genetic testing for female and male infertility using next-generation sequencing. J Assist Reprod Genet.(2018) 35:1489–96. 10.1007/s10815-018-1204-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Mallepaly R, Butler PR, Herati AS, Lamb DJ. Genetic basis of male and female infertility. Genet Hum Infertil. (2017) 21:1–16. 10.1159/000477275 [CrossRef] [Google Scholar]
- Stover PJ. Influence of human genetic variation on nutritional requirements. Am J Clin Nutr.(2006) 83:436S−42S. 10.1093/ajcn/83.2.436S [PubMed] [CrossRef] [Google Scholar]
- Reyes-Engel A, Muñoz E, Gaitan MJ, Fabre E, Gallo M, Dieguez JL, et al.. Implications on human fertility of the 677C–>T and 1298A–>C polymorphisms of the MTHFR gene: consequences of a possible genetic selection. Mol Hum Reprod.(2002) 8:952–7. 10.1093/molehr/8.10.952 [PubMed] [CrossRef] [Google Scholar]
- Laanpere M, Altmäe S, Kaart T, Stavreus-Evers A, Nilsson TK, Salumets A. Folate-metabolizing gene variants and pregnancy outcome of IVF. Reprod Biomed Online.(2011) 22:603–14. 10.1016/j.rbmo.2011.03.002 [PubMed] [CrossRef] [Google Scholar]
- Shahrokhi SZ, Kazerouni F, Ghaffari F, Rahimipour A, Omrani MD, Arabipoor A, et al.. The relationship between the MTHFR C677T genotypes to serum anti-müllerian hormone concentrations and in vitrofertilization/intracytoplasmic sperm injection outcome. Clin Lab. (2017) 63:927–34. 10.7754/Clin.Lab.2016.161104 [PubMed] [CrossRef] [Google Scholar]
- Servy EJ, Jacquesson-Fournols L, Cohen M, Menezo YJR. MTHFR isoform carriers. 5-MTHF (5-methyl tetrahydrofolate) vs folic acid: a key to pregnancy outcome: a case series. J Assist Reprod Genet. (2018) 35:1431–5. 10.1007/s10815-018-1225-2 [PMC free article][PubMed] [CrossRef] [Google Scholar]
- Beerda B, Wyszynska-Koko J, Te Pas MF, de Wit AA, Veerkamp RF. Expression profiles of genes regulating dairy cow fertility: recent findings, ongoing activities and future possibilities. Animal.(2008) 2:1158–67. 10.1017/S1751731108002371 [PubMed] [CrossRef] [Google Scholar]
- Irani M, Minkoff H, Seifer DB, Merhi Z. Vitamin D increases serum levels of the soluble receptor for advanced glycation end products in women with PCOS. J Clin Endocrinol Metab.(2014) 99:E886–90. 10.1210/jc.2013-4374 [PubMed] [CrossRef] [Google Scholar]
- Vannice G, Rasmussen H. Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet.(2014) 114:136–53. 10.1016/j.jand.2013.11.001 [PubMed] [CrossRef] [Google Scholar]
- Lu X, He Y, Zhu C, Wang H, Chen S, Lin HY. Twist1 is involved in trophoblast syncytialization by regulating GCM1. Placenta.(2016) 39:45–54. 10.1016/j.placenta.2016.01.008 [PubMed] [CrossRef] [Google Scholar]
- Dobrian AD. A tale with a Twist: a developmental gene with potential relevance for metabolic dysfunction and inflammation in adipose tissue. Front Endocrinol.(2012) 3:108–. 10.3389/fendo.2012.00108 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Oseikria M, Elis S, Maillard V, Corbin E, Uzbekova S. N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle. Theriogenology.(2016) 85:1625–34.e2. 10.1016/j.theriogenology.2016.01.019 [PubMed] [CrossRef] [Google Scholar]
- Poston L, Caleyachetty R, Cnattingius S, Corvalán C, Uauy R, Herring S, et al.. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol.(2016) 4:1025–36. 10.1016/S2213-8587(16)30217-0 [PubMed] [CrossRef] [Google Scholar]
- Yang H, Qazi IH, Pan B, Angel C, Guo S, Yang J, et al.. Dietary selenium supplementation ameliorates female reproductive efficiency in aging mice. Antioxidants.(2019) 8:634. 10.3390/antiox8120634 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Lane M, Robker RL, Robertson SA. Parenting from before conception. Science.(2014) 345:756–60. 10.1126/science.1254400 [PubMed] [CrossRef] [Google Scholar]
- Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M, Ribó S, et al.. The role of nutrition on epigenetic modifications and their implications on health. Biochimie.(2012) 94:2242–63. 10.1016/j.biochi.2012.06.012 [PubMed] [CrossRef] [Google Scholar]
- Franzago M, Santurbano D, Vitacolonna E, Stuppia L. Genes and diet in the prevention of chronic diseases in future generations. Int J Mol Sci.(2020) 21:2633. 10.3390/ijms21072633 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol.(2019) 16:35–56. 10.1038/s41575-018-0061-2 [PubMed] [CrossRef] [Google Scholar]
- Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z, Gregory JC, et al.. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. (2014) 20:799–812. 10.1016/j.cmet.2014.10.006 [PMC free article][PubMed] [CrossRef] [Google Scholar]
- Koedooder R, Singer M, Schoenmakers S, Savelkoul PHM, Morré SA, de Jonge JD, et al.. The vaginal microbiome as a predictor for outcome of in vitrofertilization with or without intracytoplasmic sperm injection: a prospective study. Hum Reprod. (2019) 34:1042–54. 10.1093/humrep/dez065 [PubMed] [CrossRef] [Google Scholar]
- Sharma M, Dwivedi P, Singh Rawat A, Dwivedi AK. Nutrition nutraceuticals: a proactive approach for healthcare. Nutraceuticals.(2016) 4:79–116. 10.1016/B978-0-12-804305-9.00003-8 [CrossRef] [Google Scholar]
- Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, et al.. Nutraceuticals and cancer: potential for natural polyphenols. Nutrients.(2021) 13:3834. 10.3390/nu13113834 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Singh RK. “Chapter 10-nutraceuticals in reproductive and developmental disorders,” in Nutraceuticals, ed Gupta R. C. (Boston: Academic Press; (2016). p. 123–34. 10.1016/B978-0-12-802147-7.00010-3 [CrossRef] [Google Scholar]
- López-Moreno A, Aguilera M. Probiotics dietary supplementation for modulating endocrine and fertility microbiota dysbiosis. Nutrients.(2020) 12:757. 10.3390/nu12030757 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al.. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol.(2014) 11:506–14. 10.1038/nrgastro.2014.66 [PubMed] [CrossRef] [Google Scholar]
- Reid G, Beuerman D, Heinemann C, Bruce AW. Probiotic Lactobacillus dose required to restore and maintain a normal vaginal flora. FEMS Immunol Med Microbiol.(2001) 32:37–41. 10.1111/j.1574-695X.2001.tb00531.x [PubMed] [CrossRef] [Google Scholar]
- Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Bieda J, et al.. The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome.(2014) 2:18. 10.1186/2049-2618-2-18 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al.. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA.(2011) 108:4680–7. 10.1073/pnas.1002611107 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazán J, et al.. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol.(2016) 215:684–703. 10.1016/j.ajog.2016.09.075 [PubMed] [CrossRef] [Google Scholar]
- Azaïs-Braesco V, Bresson JL, Guarner F, Corthier G. Not all lactic acid bacteria are probiotics,.but some are. Br J Nutr.(2010) 103:1079–81. 10.1017/S0007114510000723 [PubMed] [CrossRef] [Google Scholar]
- Rijkers GT, Bengmark S, Enck P, Haller D, Herz U, Kalliomaki M, et al.. Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research. J Nutr.(2010) 140:671s−6s. 10.3945/jn.109.113779 [PubMed] [CrossRef] [Google Scholar]
- Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients.(2013) 5:1417–35. 10.3390/nu5041417 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Cho NA, Klancic T, Nettleton JE, Paul HA, Reimer RA. Impact of food ingredients (Aspartame, Stevia, Prebiotic Oligofructose) on fertility and reproductive outcomes in obese rats. Obesity.(2018) 26:1692–5. 10.1002/oby.22325 [PubMed] [CrossRef] [Google Scholar]
- Kobayashi T, Takano M, Kaneko K, Onoue M. A one-generation reproduction toxicity study in rats treated orally with a novel galacto-oligosaccharide. Hum Exp Toxicol.(2014) 33:814–21. 10.1177/0960327113510328 [PubMed] [CrossRef] [Google Scholar]
- Kyono K, Hashimoto T, Kikuchi S, Nagai Y, Sakuraba Y. A pilot study and case reports on endometrial microbiota and pregnancy outcome: an analysis using 16S rRNA gene sequencing among IVF patients, and trial therapeutic intervention for dysbiotic endometrium. Reprod Med Biol.(2018) 18:72–82. 10.1002/rmb2.12105 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
September 2023
WELCOME
- Introduction to systematic review and meta-analysis. Korean J Anesthesiol2018 Apr; 71(2): 103–112. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903119.
2. Under-reporting of conflicts of interest among trialists: a cross-sectional study. Journal of the Royal Society of Medicine 2014, 108(3), 101-107. https://doi.org/10.1177/0141076814557878.
3. Conflict of interest in medical research, education, and practice, by Lo B and Field MJ (National Academies Press, 2009).
4. Pathways to independence: towards producing and using trustworthy evidence. BMJ 2019, l6576. https://doi.org/10.1136/bmj.l6576.
5. “Time to assume that health research is fraudulent until proven otherwise?” by Richard Smith, July 5, 2021: https://blogs.bmj.com/bmj/2021/07/05/time-to-assume-that-health-research-is-fraudulent-until-proved-otherwise.
6. Nutrition in Crisis: Flawed Studies, Misleading Advice, and the Real Science of Human Metabolism, by Richard David Feinman, PhD (Chelsea Green 2019).
NEWS
Cochrane UK: NHS pulls support. BMJ 2023, 382: https://doi.org/10.1136/bmj.p1756.
Medical Journals Are an Extension of the Marketing Arm of Pharmaceutical Companies, PLoS Medicine 2005, May, 2: 5. https://pubmed.ncbi.nlm.nih.gov/15916457.
Attention-deficit hyperactivity disorder diagnoses and prescriptions in UK primary care, 2000–2018: Population-based cohort study. BJPsych Open 2023, 9(4): https://www.cambridge.org/core/journals/bjpsych-open/article/attentiondeficit-hyperactivity-disorder-diagnoses-and-prescriptions-in-uk-primary-care-20002018-populationbased-cohort-study/E0818CCAE895FF273C7448756CFB0066.
Sex-specific risks for cardiovascular disease across the glycaemic spectrum: a population-based cohort study using the UK Biobank. The Lancet Regional Health Europe 2023, online first Aug 9: https://doi.org/10.1016/j.lanepe.2023.100693.
Endothelial AHR activity prevents lung barrier disruption in viral infection. Nature 2023, Aug 6: https://www.nature.com/articles/s41586-023-06287-y.
Endothelial sensing of AHR ligands regulates intestinal homeostasis. Nature 2023, Aug 16: https://www.nature.com/articles/s41586-023-06508-4.
An online survey of postmenopausal women to determine their attitudes and knowledge of the menopause. Post Reproductive Health 2023;29(2):67-84. doi:10.1177/20533691231166543.
Association between brain health outcomes and metabolic risk factors in persons with diabetes. Annals of Clinical and Translational Neurology, 2023; July 30, DOI: 10.1002/acn3.51859.
Peptide YY: A Paneth cell antimicrobial peptide that maintains Candida gut commensalism. Science 2023, 381 (6657): 502. https://www.science.org/doi/10.1126/science.abq3178.
Multiple Biological Mechanisms for the Potential Influence of Phytochemicals on Physical Activity Performance: A Narrative Review. Nutraceuticals 2023; 3(3):353-365. https://doi.org/10.3390/nutraceuticals3030027.
Dietary wheat gluten induces astro‐ and microgliosis in the hypothalamus of male mice. Journal of Neuroendocrinology 2023, online ahead of print: https://pubmed.ncbi.nlm.nih.gov/37534400.
A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nat Commun 2018, 9: 4630. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234216.
A dahlia flower extract has anti-diabetic properties by improving insulin 1 function in the brain. Life Metabolism 2023, June 18: https://academic.oup.com/lifemeta/advance-article/doi/10.1093/lifemeta/load026/7200078.
Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells. Nature 2023, Aug 9: https://www.nature.com/articles/s41586-023-06409-6.
Epigenetic memory of coronavirus infection in innate immune cells and progenitors. Cell 2023, Aug 18: https://www.cell.com/cell/fulltext/S0092-8674(23)00796-1.
OPINION: ELEANOR STRANG
Royal Society for Public Health (2017) “Untapped Resources: Accredited Registers in the Wider Workforce”: https://www.cnhc.org.uk/uploads/asset/file/12/Untapped-Resources_0.pdf
Professional Standards Authority, Registers accredited by the PSA: Complementary & Natural Healthcare Council https://www.professionalstandards.org.uk/what-we-do/accredited-registers/find-a-register/detail/complementary-and-natural-healthcare-council
Are We Neglecting Nutrition in UK Medical Training? A Quantitative Analysis of Nutrition-Related Education in Postgraduate Medical Training Curriculums. Nutrients 2021, 13(3): 957.
Davies S (2017) GP careers: Why I decided to train in functional medicine. gponline.com: https://www.gponline.com/gp-careers-why-i-decided-train-functional-medicine/article/1445501
Chatterjee R (2016) Viewpoint: Is the functional medicine model the future of general practice? gponline.com https://www.gponline.com/viewpoint-functional-medicine-model-future-general-practice/health-promotion/health-promotion/article/1394328
BANT (2020) How BANT Members can Support Your General Practice. https://bant.org.uk/bant-members-supporting-general-practice.
BANT (2020) GP Engagement Toolkit https://bant.org.uk/members-area/member-resources/bant-gp-engagement-toolkit.
ELAINE WILKINS
- https://www.nrscotland.gov.uk/news/2022/life-expectancy-continues-to-fall-in-scotland
- Aceshigh.com
- Inflammation: The Common Pathway of Stress Related Diseases. Front Hum Neurosci2017; 11: 316. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476783.
Glasgow conference:
https://aceawarescotland.com/ace-aware-2018.
The Relation Between Adverse Childhood Experiences and Adult Health: Turning Gold into Lead: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220625/The Permanente Journal
Felitti paper: Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Preventive Med 1998, 14(4), 245–258: https://doi.org/10.1016/s0749-3797(98)00017-8.
CFS increase:
Childhood trauma and risk for chronic fatigue syndrome: association with neuroendocrine dysfunction. Archives of General Psychiatry 2009, 66(1), 72–80. https://doi.org/10.1001/archgenpsychiatry.2008.508.
Abuse and fibromyalgia:
Physical and sexual abuse in female patients with fibromyalgia. Journal of Clinical Rheumatology 1998, 4(6), 301–306: https://doi.org/10.1097/00124743-199812000-00002.
Microbiome study:
Multigenerational Adversity Impacts On Human Gut Microbiome Composition and Socioemotional Functioning In Early Childhood. Proceedings of the National Academy of Sciences 2023, 30(120): https://doi.org/10.1073/pnas.2213768120.
INTERVIEW: MIKE ASH
The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract. 2011:161358. https://pubmed.ncbi.nlm.nih.gov/22114588.
The Bitter Aftertaste of Sugar by Morgan Stanley Research, Mar 18, 2015, reported at https://www.morganstanley.com/ideas/sugar-economics-how-sweet-it-isnt.
Commercial determinants of health. A series in The Lancet, 2023: https://www.thelancet.com/series/commercial-determinants-health.
Trends and disparities in cardiometabolic health among US adults, 1999-2018. Journal of the American College of Cardiology 2022, 80(2), 138-151. https://doi.org/10.1016/j.jacc.2022.04.046.
Emma Derbyshire: Micronutrient Intakes of British Adults Across Mid-Life: A Secondary Analysis of the UK National Diet and Nutrition Survey. Front Nutr 2018, Jul 19;5:55: https://pubmed.ncbi.nlm.nih.gov/30073167.
Tufts Food Compass: https://sites.tufts.edu/foodcompass/research/data.
The Sweet Life: The Long-Term Effects Of A Sugar-Rich Early Childhood. Working Paper 30799, National Bureau Of Economic Research, December 2022, Revised June 2023: https://www.nber.org/system/files/working_papers/w30799/w30799.pdf.
LEAP: Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 2015, Feb 26;372(9):803-13. https://pubmed.ncbi.nlm.nih.gov/25705822.
LAP 2016: Impact of peanut consumption in the LEAP Study: Feasibility, growth, and nutrition. J Allergy Clin Immunol 2016, Oct;138(4):1108-1118. https://pubmed.ncbi.nlm.nih.gov/27297994.
Old Friends hypothesis: https://www.grahamrook.net/OldFriends/oldfriends.html.
Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. Cell 2023, Jul 6;186(14):3111-3124.e13. https://www.cell.com/cell/pdf/S0092-8674(23)00597-4.pdf.
A study on the mineral depletion of the foods available to us as a nation over the period 1940 to 1991. Nutr Health 2003, 17(2):85-115. https://pubmed.ncbi.nlm.nih.gov/14653505.
PERIMENOPAUSE – PIPPA CAMPBELL
- Actual Cleaning and Simulated Cleaning Attenuate Psychological and Physiological Effects of Stressful Events. Social Psychological and Personality Science 2023, 14(4), 381-394: https://doi.org/10.1177/19485506221099428. First published online July 9, 2022.
2. A review of effective herbal medicines in controlling menopausal symptoms. Electron Physician 2017 Nov 25;9(11):5826-5833. https://pubmed.ncbi.nlm.nih.gov/29403626.
ALZHEIMER’s and KETO
- https://www.alzheimersresearchuk.org/dementia-leading-cause-of-death-in-2022.
2. 52%: https://www.dementiastatistics.org/attitudes.
3. https://www.alz.org/alzheimers-dementia/what-is-alzheimers/younger-early-onset. - The First Survivors of Alzheimer’s, by Dale Bredesen, MD, p45 (Avery 2022).
5. Reversal of cognitive decline: a novel therapeutic program. Aging (Albany NY) 2014, Sep;6(9):707–17. https://pubmed.ncbi.nlm.nih.gov/25324467.
6. The End of Alzheimer’s Program: The First Protocol to Enhance Cognition and Reverse Decline at Any Age. By Dale Bredesen, MD. (Avery, 2020).
7. Observed Improvement in Cognition During a Personalized Lifestyle Intervention in People with Cognitive Decline. Journal of Alzheimer’s Disease. 2023 Jun 19, 1-12: http://dx.doi.org/10.3233/jad-230004.
8. Supplementary table 4, available for download online at https://dx.doi.org/ 10.3233/JAD-230004. - Ketogenic Diet In Alzheimer’s Disease. IJMS 2019, 16(20), 3892. https://doi.org/10.3390/ijms20163892.
- Study Of the Ketogenic Agent Ac-1202 In Mild To Moderate Alzheimer’s Disease: A Randomized, Double-blind, Placebo-controlled, Multicenter Trial. Nutr Metab (Lond) 2009, 1(6), 31. https://doi.org/10.1186/1743-7075-6-31.
11. Dietary Ketosis Enhances Memory In Mild Cognitive Impairment. Neurobiology of Aging 2012, 2(33), 425.e19-425.e27. https://doi.org/10.1016/j.neurobiolaging.2010.10.006.
12. Modified Ketogenic Diet Is Associated With Improved Cerebrospinal Fluid Biomarker Profile, Cerebral Perfusion, and Cerebral Ketone Body Uptake In Older Adults At Risk For Alzheimer’s Disease: A Pilot Study. Neurobiology of Aging 2020, (86), 54-63: https://doi.org/10.1016/j.neurobiolaging.2019.09.015.
13. Randomized crossover trial of a modified ketogenic diet in Alzheimer’s disease. Alz Res Therapy2021, 13, 51: https://alzres.biomedcentral.com/articles/10.1186/s13195-021-00783-x.
14. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimers Dement (N Y) 2017;4:28-36. https://pubmed.ncbi.nlm.nih.gov/29955649.
Matt Phllips quote from: https://www.defeatdiabetes.com.au/resources/low-carb/defeat-diabetes-live-can-alzheimers-be-prevented-with-a-ketogenic-diet.
RESEARCH
The Microbiome, Epigenome, and Diet in Adults with Obesity during Behavioral Weight Loss. Nutrients 2023; 15 (16): 3588 DOI: 10.3390/nu15163588.
Detection of Various Microplastics in Patients Undergoing Cardiac Surgery. Environmental Science & Technology, 2023; 57 (30): 10911 DOI: 10.1021/acs.est.2c07179.
Effect of exercise intervention on lung function in asthmatic adults: a network meta-analysis. Annals of Medicine 2023, Aug 10, 55 (2): https://www.tandfonline.com/doi/full/10.1080/07853890.2023.2237031.
Oral inflammatory load predicts vascular function in a young adult population: A pilot study. Frontiers in Oral Health 2023, Aug 16: 10.3389/froh.2023.1233881.
Unveiling the Therapeutic Potentials of Mushroom Bioactive Compounds in Alzheimer’s Disease. Foods 2023, Aug 7, 12(15), 2972: https://www.mdpi.com/2304-8158/12/15/2972.
Association of APOE ε4 Status With Long-term Declines in Odor Sensitivity, Odor Identification, and Cognition in Older US Adults. Neurology 2023, July 26: https://n.neurology.org/content/early/2023/07/26/WNL.0000000000207659.
August 2023
NEWS
The immunology of long COVID. Nat Rev Immunol 2023. https://doi.org/10.1038/s41577-023-00904-7.
“Prof Danny Altmann: the burden of long COVID”, RNZ July 22: https://www.rnz.co.nz/national/programmes/saturday/audio/2018899512/prof-danny-altmann-the-burden-of-long-covid.
“Medicine is plagued by untrustworthy clinical trials. How many studies are faked or flawed?” By Richard Van Noorden. Nature 2023, July 18: https://www.nature.com/articles/d41586-023-02299-w.
Observed Improvement in Cognition During a Personalized Lifestyle Intervention in People with Cognitive Decline. J Alzheimers Dis 2023, online ahead of print. https://pubmed.ncbi.nlm.nih.gov/37355891.
Reversal of cognitive decline: a novel therapeutic program. Aging (Albany NY) 2014, Sep; 6(9): 707–717. https://www.aging-us.com/article/100690/text.
Burden of serious harms from diagnostic error in the USA. BMJ Quality & Safety 2023. Published Online First: 17 July 2023. https://qualitysafety.bmj.com/content/early/2023/07/16/bmjqs-2021-014130.
DR DAVID UNWIN
Unwin D, Unwin J. Low carbohydrate diet to achieve weight loss and improve HbA1c in type 2 diabetes and pre-diabetes: experience from one general practice. Practical Diabetes 2014;31(2):76-9.
David Unwin DH, Geoffrey Livesey,. It is the glycaemic response to, not the carbohydrate content of food that maters in diabetes and obesity: The glycaemic index revisited. Journal of Insulin Resistance 2016;2016;1(1), a8.(https://insulinresistance.org/index.php/jir/article/view/8/11).
Unwin DJ, Tobin SD, Murray SW, Delon C, Brady AJ. Substantial and Sustained Improvements in Blood Pressure, Weight and Lipid Profiles from a Carbohydrate Restricted Diet: An Observational Study of Insulin Resistant Patients in Primary Care. International Journal of Environmental Research and Public Health 2019;16(15):2680.
Unwin D, Khalid AA, Unwin J, Crocombe D, Delon C, Martyn K, et al. Insights from a general practice service evaluation supporting a lower carbohydrate diet in patients with type 2 diabetes mellitus and prediabetes: a secondary analysis of routine clinic data including HbA1c, weight and prescribing over 6 years. BMJ Nutrition, Prevention & Health 2020:bmjnph-2020-000072.
Unwin D, Delon C, Unwin J, Tobin S, Taylor R. What predicts drug-free type 2 diabetes remission? Insights from an 8-year general practice service evaluation of a lower carbohydrate diet with weight loss. BMJ Nutrition, Prevention & Health 2023:e000544.
HEART HEALTH
“Heart care waiting list at new record high in England”: https://www.bhf.org.uk/what-we-do/news-from-the-bhf/news-archive/2023/july/heart-care-waiting-list-at-new-record-high. July 13, 2023.
England “firmly in the grip of a heart and stroke care emergency”: “Health bosses warn of heart disease emergency in England”, by Andrew Gregory. The Guardian, June 21, 2023.
Vitamin D supplementation and major cardiovascular events: D-Health randomised controlled trial. BMJ 2023; 381 :e075230. https://www.bmj.com/content/381/bmj-2023-075230.
The effect of vitamin D3 supplementation on atrial fibrillation in generally healthy men and women: The Finnish Vitamin D Trial. American Heart Journal 2023: https://www.sciencedirect.com/science/article/pii/S0002870323001436?via%3Dihub.
Diet, cardiovascular disease, and mortality in 80 countries. European Heart Journal 2023. DOI: 10.1093/eurheartj/ehad269.
CREATINE
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. Int. Soc. Sports Nutr.2017, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Stares, A.; Bains, M. The Additive Effects of Creatine Supplementation and Exercise Training in an Aging Population: A Systematic Review of Randomized Controlled Trials. Geriatr. Phys. Ther. 2020, 43, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Dolan, E.; Gualano, B.; Rawson, E.S. Beyond muscle: The effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. J. Sport Sci.2019, 19, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dolan, E.; Artioli, G.G.; Pereira, R.M.R.; Gualano, B. Muscular Atrophy and Sarcopenia in the Elderly: Is There a Role for Creatine Supplementation? Biomolecules2019, 9, 642. [Google Scholar] [CrossRef][Green Version]
- Wallimann, T.; Riek, U.; Moddel, M. Intradialytic creatine supplementation: A scientific rationale for improving the health and quality of life of dialysis patients. Hypotheses2017, 99, 1–14. [Google Scholar] [CrossRef]
- Riesberg, L.A.; Weed, S.A.; McDonald, T.L.; Eckerson, J.M.; Drescher, K.M. Beyond muscles: The untapped potential of creatine. Immunopharmacol.2016, 37, 31–42. [Google Scholar] [CrossRef][Green Version]
- Ellery, S.J.; Walker, D.W.; Dickinson, H. Creatine for women: A review of the relationship between creatine and the reproductive cycle and female-specific benefits of creatine therapy. Amino Acids2016, 48, 1807–1817. [Google Scholar] [CrossRef]
- Smith, R.N.; Agharkar, A.S.; Gonzales, E.B. A review of creatine supplementation in age-related diseases: More than a supplement for athletes. F1000Research2014, 3, 222. [Google Scholar] [CrossRef][Green Version]
- Candow, D.G.; Chilibeck, P.D.; Forbes, S.C. Creatine supplementation and aging musculoskeletal health. Endocrine2014, 45, 354–361. [Google Scholar] [CrossRef]
- Gualano, B.; Roschel, H.; Lancha, A.H., Jr.; Brightbill, C.E.; Rawson, E.S. In sickness and in health: The widespread application of creatine supplementation. Amino Acids2012, 43, 519–529. [Google Scholar] [CrossRef]
- Pinto, C.L.; Botelho, P.B.; Pimentel, G.D.; Campos-Ferraz, P.L.; Mota, J.F. Creatine supplementation and glycemic control: A systematic review. Amino Acids2016, 48, 2103–2129. [Google Scholar] [CrossRef] [PubMed]
- Candow, D.G.; Forbes, S.C.; Chilibeck, P.D.; Cornish, S.M.; Antonio, J.; Kreider, R.B. Variables Influencing the Effectiveness of Creatine Supplementation as a Therapeutic Intervention for Sarcopenia. Nutr.2019, 6, 124. [Google Scholar] [CrossRef] [PubMed]
- Chilibeck, P.D.; Kaviani, M.; Candow, D.G.; Zello, G.A. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: A meta-analysis. Open Access J. Sports Med.2017, 8, 213–226. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Candow, D.G.; Forbes, S.C.; Chilibeck, P.D.; Cornish, S.M.; Antonio, J.; Kreider, R.B. Effectiveness of Creatine Supplementation on Aging Muscle and Bone: Focus on Falls Prevention and Inflammation. Clin. Med.2019, 8, 488. [Google Scholar] [CrossRef][Green Version]
- Fairman, C.M.; Kendall, K.L.; Newton, R.U.; Hart, N.H.; Taaffe, D.R.; Chee, R.; Tang, C.I.; Galvao, D.A. Examining the effects of creatine supplementation in augmenting adaptations to resistance training in patients with prostate cancer undergoing androgen deprivation therapy: A randomised, double-blind, placebo-controlled trial. BMJ Open2019, 9, e030080. [Google Scholar] [CrossRef]
- Fairman, C.M.; Kendall, K.L.; Hart, N.H.; Taaffe, D.R.; Galvao, D.A.; Newton, R.U. The potential therapeutic effects of creatine supplementation on body composition and muscle function in cancer. Rev. Oncol Hematol2019, 133, 46–57. [Google Scholar] [CrossRef]
- Di Biase, S.; Ma, X.; Wang, X.; Yu, J.; Wang, Y.C.; Smith, D.J.; Zhou, Y.; Li, Z.; Kim, Y.J.; Clarke, N.; et al. Creatine uptake regulates CD8 T cell antitumor immunity. Exp. Med.2019, 216, 2869–2882. [Google Scholar] [CrossRef][Green Version]
- Campos-Ferraz, P.L.; Gualano, B.; das Neves, W.; Andrade, I.T.; Hangai, I.; Pereira, R.T.; Bezerra, R.N.; Deminice, R.; Seelaender, M.; Lancha, A.H. Exploratory studies of the potential anti-cancer effects of creatine. Amino Acids2016, 48, 1993–2001. [Google Scholar] [CrossRef]
- Dover, S.; Stephens, S.; Schneiderman, J.E.; Pullenayegum, E.; Wells, G.D.; Levy, D.M.; Marcuz, J.A.; Whitney, K.; Schulze, A.; Tein, I.; et al. The effect of creatine supplementation on muscle function in childhood myositis: A randomized, double-blind, placebo-controlled feasibility study. Rheumatol.2020. [Google Scholar] [CrossRef]
- Balestrino, M.; Adriano, E. Creatine as a Candidate to Prevent Statin Myopathy. Biomolecules2019, 9, 496. [Google Scholar] [CrossRef][Green Version]
- Balestrino, M.; Sarocchi, M.; Adriano, E.; Spallarossa, P. Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease. Amino Acids2016, 48, 1955–1967. [Google Scholar] [CrossRef] [PubMed]
- Neves, M., Jr.; Gualano, B.; Roschel, H.; Fuller, R.; Benatti, F.B.; Pinto, A.L.; Lima, F.R.; Pereira, R.M.; Lancha, A.H., Jr.; Bonfa, E. Beneficial effect of creatine supplementation in knee osteoarthritis. Sci. Sports Exerc.2011, 43, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, V.A.; Defoor, J.G.; Stevens, A.; Schepers, D.; Hespel, P.; Decramer, M.; Mortelmans, L.; Dobbels, F.; Vanhaecke, J.; Fagard, R.H.; et al. Effect of creatine supplementation as a potential adjuvant therapy to exercise training in cardiac patients: A randomized controlled trial. Rehabil.2010, 24, 988–999. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghimlas, F.; Todd, D.C. Creatine supplementation for patients with COPD receiving pulmonary rehabilitation: A systematic review and meta-analysis. Respirology2010, 15, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Hespel, P.; Derave, W. Ergogenic effects of creatine in sports and rehabilitation. Subcell Biochem.2007, 46, 245–259. [Google Scholar] [PubMed]
- Hespel, P.; Op’t Eijnde, B.; Van Leemputte, M.; Urso, B.; Greenhaff, P.L.; Labarque, V.; Dymarkowski, S.; Van Hecke, P.; Richter, E.A. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. Physiol.2001, 536, 625–633. [Google Scholar] [CrossRef]
- Van Cutsem, J.; Roelands, B.; Pluym, B.; Tassignon, B.; Verschueren, J.O.; De Pauw, K.; Meeusen, R. Can Creatine Combat the Mental Fatigue-associated Decrease in Visuomotor Skills? Sci. Sports Exerc.2020, 52, 120–130. [Google Scholar] [CrossRef]
- Avgerinos, K.I.; Spyrou, N.; Bougioukas, K.I.; Kapogiannis, D. Effects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trials. Gerontol.2018, 108, 166–173. [Google Scholar] [CrossRef]
- Toniolo, R.A.; Fernandes, F.B.F.; Silva, M.; Dias, R.D.S.; Lafer, B. Cognitive effects of creatine monohydrate adjunctive therapy in patients with bipolar depression: Results from a randomized, double-blind, placebo-controlled trial. Affect. Disord.2017, 224, 69–75. [Google Scholar] [CrossRef]
- Van Bavel, D.; de Moraes, R.; Tibirica, E. Effects of dietary supplementation with creatine on homocysteinemia and systemic microvascular endothelial function in individuals adhering to vegan diets. Clin. Pharmacol.2019, 33, 428–440. [Google Scholar] [CrossRef]
- Zervou, S.; Whittington, H.J.; Russell, A.J.; Lygate, C.A. Augmentation of Creatine in the Heart. Mini Rev. Med. Chem.2016, 16, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Clarke, H.; Kim, D.H.; Meza, C.A.; Ormsbee, M.J.; Hickner, R.C. The Evolving Applications of Creatine Supplementation: Could Creatine Improve Vascular Health? Nutrients2020, 12, 2834. [Google Scholar] [CrossRef] [PubMed]
- Jager, R.; Purpura, M.; Shao, A.; Inoue, T.; Kreider, R.B. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids2011, 40, 1369–1383. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Paddon-Jones, D.; Borsheim, E.; Wolfe, R.R. Potential ergogenic effects of arginine and creatine supplementation. Nutr.2004, 134, 2888S–2894S. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brosnan, M.E.; Brosnan, J.T. The role of dietary creatine. Amino Acids2016, 48, 1785–1791. [Google Scholar] [CrossRef]
- da Silva, R.P.; Clow, K.; Brosnan, J.T.; Brosnan, M.E. Synthesis of guanidinoacetate and creatine from amino acids by rat pancreas. J. Nutr.2014, 111, 571–577. [Google Scholar] [CrossRef][Green Version]
- da Silva, R.P.; Nissim, I.; Brosnan, M.E.; Brosnan, J.T. Creatine synthesis: Hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. J. Physiol. Endocrinol. Metab.2009, 296, E256–E261. [Google Scholar] [CrossRef]
- Bertin, M.; Pomponi, S.M.; Kokuhuta, C.; Iwasaki, N.; Suzuki, T.; Ellington, W.R. Origin of the genes for the isoforms of creatine kinase. Gene2007, 392, 273–282. [Google Scholar] [CrossRef]
- Suzuki, T.; Mizuta, C.; Uda, K.; Ishida, K.; Mizuta, K.; Sona, S.; Compaan, D.M.; Ellington, W.R. Evolution and divergence of the genes for cytoplasmic, mitochondrial, and flagellar creatine kinases. Mol. Evol.2004, 59, 218–226. [Google Scholar] [CrossRef]
- Sahlin, K.; Harris, R.C. The creatine kinase reaction: A simple reaction with functional complexity. Amino Acids2011, 40, 1363–1367. [Google Scholar] [CrossRef]
- Harris, R. Creatine in health, medicine and sport: An introduction to a meeting held at Downing College, University of Cambridge, July 2010. Amino Acids2011, 40, 1267–1270. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jager, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. Int. Soc. Sports Nutr.2018, 15, 38. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Meyers, S. Sports nutrition market growth watch. In Natural Products Insider; Informa Exhibitions: Irving, TX, USA, 2016. [Google Scholar]
- Buford, T.W.; Kreider, R.B.; Stout, J.R.; Greenwood, M.; Campbell, B.; Spano, M.; Ziegenfuss, T.; Lopez, H.; Landis, J.; Antonio, J. International Society of Sports Nutrition position stand: Creatine supplementation and exercise. Int. Soc. Sports Nutr.2007, 4, 6. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kreider, R.B.; Jung, Y.P. Creatine supplementation in exercise, sport, and medicine. Exerc. Nutr. Biochem.2011, 15, 53–69. [Google Scholar] [CrossRef]
- Hultman, E.; Soderlund, K.; Timmons, J.A.; Cederblad, G.; Greenhaff, P.L. Muscle creatine loading in men. Appl. Physiol.1996, 81, 232–237. [Google Scholar] [CrossRef]
- Green, A.L.; Hultman, E.; Macdonald, I.A.; Sewell, D.A.; Greenhaff, P.L. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. J. Physiol.1996, 271, E821–E826. [Google Scholar] [CrossRef]
- Balsom, P.D.; Soderlund, K.; Ekblom, B. Creatine in humans with special reference to creatine supplementation. Sports Med.1994, 18, 268–280. [Google Scholar] [CrossRef]
- Harris, R.C.; Soderlund, K.; Hultman, E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Sci.1992, 83, 367–374. [Google Scholar] [CrossRef][Green Version]
- Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids2011, 40, 1271–1296. [Google Scholar] [CrossRef][Green Version]
- Bender, A.; Klopstock, T. Creatine for neuroprotection in neurodegenerative disease: End of story? Amino Acids2016, 48, 1929–1940. [Google Scholar] [CrossRef]
- Hanna-El-Daher, L.; Braissant, O. Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models? Amino Acids2016, 48, 1877–1895. [Google Scholar] [CrossRef] [PubMed]
- Braissant, O.; Henry, H.; Beard, E.; Uldry, J. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids2011, 40, 1315–1324. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wallimann, T.; Schlosser, T.; Eppenberger, H.M. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. Biol. Chem.1984, 259, 5238–5246. [Google Scholar] [CrossRef]
- Wallimann, T.; Dolder, M.; Schlattner, U.; Eder, M.; Hornemann, T.; O’Gorman, E.; Ruck, A.; Brdiczka, D. Some new aspects of creatine kinase (CK): Compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors1998, 8, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Schlattner, U.; Klaus, A.; Rios, S.R.; Guzun, R.; Kay, L.; Tokarska-Schlattner, M. Cellular compartmentation of energy metabolism: Creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids2016, 48, 1751–1774. [Google Scholar] [CrossRef]
- Ydfors, M.; Hughes, M.C.; Laham, R.; Schlattner, U.; Norrbom, J.; Perry, C.G. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise. Physiol.2016, 594, 3127–3140. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tarnopolsky, M.A.; Parshad, A.; Walzel, B.; Schlattner, U.; Wallimann, T. Creatine transporter and mitochondrial creatine kinase protein content in myopathies. Muscle Nerve2001, 24, 682–688. [Google Scholar] [CrossRef]
- Santacruz, L.; Jacobs, D.O. Structural correlates of the creatine transporter function regulation: The undiscovered country. Amino Acids2016, 48, 2049–2055. [Google Scholar] [CrossRef]
- Braissant, O. Creatine and guanidinoacetate transport at blood-brain and blood-cerebrospinal fluid barriers. Inherit. Metab. Dis.2012, 35, 655–664. [Google Scholar] [CrossRef][Green Version]
- Beard, E.; Braissant, O. Synthesis and transport of creatine in the CNS: Importance for cerebral functions. Neurochem.2010, 115, 297–313. [Google Scholar] [CrossRef][Green Version]
- Saraiva, A.L.; Ferreira, A.P.; Silva, L.F.; Hoffmann, M.S.; Dutra, F.D.; Furian, A.F.; Oliveira, M.S.; Fighera, M.R.; Royes, L.F. Creatine reduces oxidative stress markers but does not protect against seizure susceptibility after severe traumatic brain injury. Brain Res. Bull.2012, 87, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R. Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. Strength Cond. Res.2011, 25, 3448–3455. [Google Scholar] [CrossRef] [PubMed]
- Tarnopolsky, M.A. Clinical use of creatine in neuromuscular and neurometabolic disorders. Subcell Biochem.2007, 46, 183–204. [Google Scholar] [PubMed]
- Kley, R.A.; Tarnopolsky, M.A.; Vorgerd, M. Creatine for treating muscle disorders. Cochrane Database Syst. Rev. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Potential benefits of creatine monohydrate supplementation in the elderly. Opin. Clin. Nutr. Metab. Care2000, 3, 497–502. [Google Scholar] [CrossRef]
- Candow, D.G.; Vogt, E.; Johannsmeyer, S.; Forbes, S.C.; Farthing, J.P. Strategic creatine supplementation and resistance training in healthy older adults. Physiol. Nutr. Metab.2015, 40, 689–694. [Google Scholar] [CrossRef][Green Version]
- Moon, A.; Heywood, L.; Rutherford, S.; Cobbold, C. Creatine supplementation: Can it improve quality of life in the elderly without associated resistance training? Aging Sci.2013, 6, 251–257. [Google Scholar] [CrossRef]
- Rawson, E.S.; Venezia, A.C. Use of creatine in the elderly and evidence for effects on cognitive function in young and old. Amino Acids2011, 40, 1349–1362. [Google Scholar] [CrossRef]
- Candow, D.G. Sarcopenia: Current theories and the potential beneficial effect of creatine application strategies. Biogerontology2011, 12, 273–281. [Google Scholar] [CrossRef]
- Candow, D.G.; Chilibeck, P.D. Potential of creatine supplementation for improving aging bone health. Nutr. Health Aging2010, 14, 149–153. [Google Scholar] [CrossRef]
- Cornish, S.M.; Chilibeck, P.D.; Burke, D.G. The effect of creatine monohydrate supplementation on sprint skating in ice-hockey players. Sports Med. Phys. Fit.2006, 46, 90–98. [Google Scholar]
- Dawson, B.; Vladich, T.; Blanksby, B.A. Effects of 4 weeks of creatine supplementation in junior swimmers on freestyle sprint and swim bench performance. Strength Cond. Res.2002, 16, 485–490. [Google Scholar] [PubMed]
- Grindstaff, P.D.; Kreider, R.; Bishop, R.; Wilson, M.; Wood, L.; Alexander, C.; Almada, A. Effects of creatine supplementation on repetitive sprint performance and body composition in competitive swimmers. J. Sport Nutr.1997, 7, 330–346. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, I.; Gyore, I.; Csende, Z.; Racz, L.; Tihanyi, J. Creatine supplementation improves the anaerobic performance of elite junior fin swimmers. Acta Physiol. Hung.2009, 96, 325–336. [Google Scholar] [CrossRef]
- Silva, A.J.; Machado Reis, V.; Guidetti, L.; Bessone Alves, F.; Mota, P.; Freitas, J.; Baldari, C. Effect of creatine on swimming velocity, body composition and hydrodynamic variables. Sports Med. Phys. Fit.2007, 47, 58–64. [Google Scholar]
- Kreider, R.B.; Ferreira, M.; Wilson, M.; Grindstaff, P.; Plisk, S.; Reinardy, J.; Cantler, E.; Almada, A.L. Effects of creatine supplementation on body composition, strength, and sprint performance. Sci. Sports Exerc.1998, 30, 73–82. [Google Scholar] [CrossRef]
- Stone, M.H.; Sanborn, K.; Smith, L.L.; O’Bryant, H.S.; Hoke, T.; Utter, A.C.; Johnson, R.L.; Boros, R.; Hruby, J.; Pierce, K.C.; et al. Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players. J. Sport Nutr.1999, 9, 146–165. [Google Scholar]
- Bemben, M.G.; Bemben, D.A.; Loftiss, D.D.; Knehans, A.W. Creatine supplementation during resistance training in college football athletes. Sci. Sports Exerc.2001, 33, 1667–1673. [Google Scholar]
- Hoffman, J.; Ratamess, N.; Kang, J.; Mangine, G.; Faigenbaum, A.; Stout, J. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. J. Sport Nutr. Exerc. Metab.2006, 16, 430–446. [Google Scholar] [CrossRef][Green Version]
- Chilibeck, P.D.; Magnus, C.; Anderson, M. Effect of in-season creatine supplementation on body composition and performance in rugby union football players. Physiol. Nutr. Metab.2007, 32, 1052–1057. [Google Scholar] [CrossRef]
- Claudino, J.G.; Mezencio, B.; Amaral, S.; Zanetti, V.; Benatti, F.; Roschel, H.; Gualano, B.; Amadio, A.C.; Serrao, J.C. Creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players. Int. Soc. Sports Nutr.2014, 11, 32. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kerksick, C.M.; Rasmussen, C.; Lancaster, S.; Starks, M.; Smith, P.; Melton, C.; Greenwood, M.; Almada, A.; Kreider, R. Impact of differing protein sources and a creatine containing nutritional formula after 12 weeks of resistance training. Nutrition2007, 23, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Wilborn, C.D.; Campbell, W.I.; Harvey, T.M.; Marcello, B.M.; Roberts, M.D.; Parker, A.G.; Byars, A.G.; Greenwood, L.D.; Almada, A.L.; et al. The effects of creatine monohydrate supplementation with and without D-pinitol on resistance training adaptations. Strength Cond. Res.2009, 23, 2673–2682. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Galvan, E.; Walker, D.K.; Simbo, S.Y.; Dalton, R.; Levers, K.; O’Connor, A.; Goodenough, C.; Barringer, N.D.; Greenwood, M.; Rasmussen, C.; et al. Acute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance. Int. Soc. Sports Nutr.2016, 13, 12. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Volek, J.S.; Kraemer, W.J.; Bush, J.A.; Boetes, M.; Incledon, T.; Clark, K.L.; Lynch, J.M. Creatine supplementation enhances muscular performance during high-intensity resistance exercise. Am. Diet. Assoc.1997, 97, 765–770. [Google Scholar] [CrossRef]
- Volek, J.S.; Mazzetti, S.A.; Farquhar, W.B.; Barnes, B.R.; Gomez, A.L.; Kraemer, W.J. Physiological responses to short-term exercise in the heat after creatine loading. Sci. Sports Exerc.2001, 33, 1101–1108. [Google Scholar] [CrossRef]
- Volek, J.S.; Ratamess, N.A.; Rubin, M.R.; Gomez, A.L.; French, D.N.; McGuigan, M.M.; Scheett, T.P.; Sharman, M.J.; Hakkinen, K.; Kraemer, W.J. The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. J. Appl. Physiol.2004, 91, 628–637. [Google Scholar] [CrossRef]
- Kreider, R.B.; Wilborn, C.D.; Taylor, L.; Campbell, B.; Almada, A.L.; Collins, R.; Cooke, M.; Earnest, C.P.; Greenwood, M.; Kalman, D.S.; et al. ISSN exercise & sport nutrition review: Research & recommendations. Int. Soc. Sports Nutr.2010, 7, 7. [Google Scholar] [CrossRef][Green Version]
- Branch, J.D. Effect of creatine supplementation on body composition and performance: A meta-analysis. J. Sport Nutr. Exerc. Metab.2003, 13, 198–226. [Google Scholar] [CrossRef]
- Devries, M.C.; Phillips, S.M. Creatine supplementation during resistance training in older adults-a meta-analysis. Sci. Sports Exerc.2014, 46, 1194–1203. [Google Scholar] [CrossRef]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.X.; Dutheil, F. Creatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-Analyses. Sports Med.2015, 45, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Wiroth, J.B.; Bermon, S.; Andrei, S.; Dalloz, E.; Hebuterne, X.; Dolisi, C. Effects of oral creatine supplementation on maximal pedalling performance in older adults. J. Appl. Physiol.2001, 84, 533–539. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T.; Mielcarz, G.; Harris, R.C.; Swain, J.P.; Howard, A. Creatine supplementation and cognitive performance in elderly individuals. Dev. Cogn. B Aging Neuropsychol. Cogn.2007, 14, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Rawson, E.S.; Clarkson, P.M. Acute creatine supplementation in older men. J. Sports Med.2000, 21, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, A.F.; Januario, R.S.; Junior, R.P.; Gerage, A.M.; Pina, F.L.; do Nascimento, M.A.; Padovani, C.R.; Cyrino, E.S. Long-term creatine supplementation improves muscular performance during resistance training in older women. J. Appl. Physiol.2013, 113, 987–996. [Google Scholar] [CrossRef]
- Kreider, R.B. Effects of creatine supplementation on performance and training adaptations. Cell Biochem.2003, 244, 89–94. [Google Scholar]
- Gualano, B.; Macedo, A.R.; Alves, C.R.; Roschel, H.; Benatti, F.B.; Takayama, L.; de Sa Pinto, A.L.; Lima, F.R.; Pereira, R.M. Creatine supplementation and resistance training in vulnerable older women: A randomized double-blind placebo-controlled clinical trial. Gerontol.2014, 53, 7–15. [Google Scholar] [CrossRef]
- Candow, D.G.; Little, J.P.; Chilibeck, P.D.; Abeysekara, S.; Zello, G.A.; Kazachkov, M.; Cornish, S.M.; Yu, P.H. Low-dose creatine combined with protein during resistance training in older men. Sci. Sports Exerc.2008, 40, 1645–1652. [Google Scholar] [CrossRef]
- Hass, C.J.; Collins, M.A.; Juncos, J.L. Resistance training with creatine monohydrate improves upper-body strength in patients with Parkinson disease: A randomized trial. Neural Repair2007, 21, 107–115. [Google Scholar] [CrossRef]
- Candow, D.G.; Chilibeck, P.D. Effect of creatine supplementation during resistance training on muscle accretion in the elderly. Nutr. Health Aging2007, 11, 185–188. [Google Scholar]
- Chilibeck, P.D.; Chrusch, M.J.; Chad, K.E.; Shawn Davison, K.S.; Burke, D.G. Creatine monohydrate and resistance training increase bone mineral content and density in older men. Nutr. Health Aging2005, 9, 352–353. [Google Scholar] [PubMed]
- Burke, D.G.; Chilibeck, P.D.; Parise, G.; Candow, D.G.; Mahoney, D.; Tarnopolsky, M. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Sci. Sports Exerc.2003, 35, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
- Wilder, N.; Gilders, R.; Hagerman, F.; Deivert, R.G. The effects of a 10-week, periodized, off-season resistance-training program and creatine supplementation among collegiate football players. Strength Cond. Res.2002, 16, 343–352. [Google Scholar] [PubMed]
- Izquierdo, M.; Ibanez, J.; Gonzalez-Badillo, J.J.; Gorostiaga, E.M. Effects of creatine supplementation on muscle power, endurance, and sprint performance. Sci. Sports Exerc.2002, 34, 332–343. [Google Scholar] [CrossRef]
- Chrusch, M.J.; Chilibeck, P.D.; Chad, K.E.; Davison, K.S.; Burke, D.G. Creatine supplementation combined with resistance training in older men. Sci. Sports Exerc.2001, 33, 2111–2117. [Google Scholar] [CrossRef]
- Becque, M.D.; Lochmann, J.D.; Melrose, D.R. Effects of oral creatine supplementation on muscular strength and body composition. Sci. Sports Exerc.2000, 32, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Duncan, N.D.; Mazzetti, S.A.; Staron, R.S.; Putukian, M.; Gomez, A.L.; Pearson, D.R.; Fink, W.J.; Kraemer, W.J. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Sci. Sports Exerc.1999, 31, 1147–1156. [Google Scholar] [CrossRef]
- Ziegenfuss, T.N.; Habowski, S.M.; Lemieux, R.; Sandrock, J.E.; Kedia, A.W.; Kerksick, C.M.; Lopez, H.L. Effects of a dietary supplement on golf drive distance and functional indices of golf performance. Int. Soc. Sports Nutr.2015, 12, 4. [Google Scholar] [CrossRef][Green Version]
- Lamontagne-Lacasse, M.; Nadon, R.; Goulet, E.D. Effect of creatine supplementation on jumping performance in elite volleyball players. J. Sports Physiol. Perform.2011, 6, 525–533. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Gonzalez-Jurado, J.A.; Martinez, C.; Nakamura, F.Y.; Penailillo, L.; Meylan, C.M.; Caniuqueo, A.; Canas-Jamet, R.; Moran, J.; Alonso-Martinez, A.M.; et al. Effects of plyometric training and creatine supplementation on maximal-intensity exercise and endurance in female soccer players. Sci. Med. Sport2016, 19, 682–687. [Google Scholar] [CrossRef][Green Version]
- Yanez-Silva, A.; Buzzachera, C.F.; Picarro, I.D.; Januario, R.S.; Ferreira, L.H.; McAnulty, S.R.; Utter, A.C.; Souza-Junior, T.P. Effect of low dose, short-term creatine supplementation on muscle power output in elite youth soccer players. Int. Soc. Sports Nutr.2017, 14, 5. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ayoama, R.; Hiruma, E.; Sasaki, H. Effects of creatine loading on muscular strength and endurance of female softball players. Sports Med. Phys. Fit.2003, 43, 481–487. [Google Scholar]
- Jones, A.M.; Atter, T.; Georg, K.P. Oral creatine supplementation improves multiple sprint performance in elite ice-hockey players. Sports Med. Phys. Fit.1999, 39, 189–196. [Google Scholar] [CrossRef]
- Ahmun, R.P.; Tong, R.J.; Grimshaw, P.N. The effects of acute creatine supplementation on multiple sprint cycling and running performance in rugby players. Strength Cond. Res.2005, 19, 92–97. [Google Scholar] [CrossRef]
- Cox, G.; Mujika, I.; Tumilty, D.; Burke, L. Acute creatine supplementation and performance during a field test simulating match play in elite female soccer players. J. Sport Nutr. Exerc. Metab.2002, 12, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Preen, D.; Dawson, B.; Goodman, C.; Lawrence, S.; Beilby, J.; Ching, S. Effect of creatine loading on long-term sprint exercise performance and metabolism. Sci. Sports Exerc.2001, 33, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Aaserud, R.; Gramvik, P.; Olsen, S.R.; Jensen, J. Creatine supplementation delays onset of fatigue during repeated bouts of sprint running. J. Med. Sci. Sports1998, 8, 247–251. [Google Scholar] [CrossRef]
- Bosco, C.; Tihanyi, J.; Pucspk, J.; Kovacs, I.; Gabossy, A.; Colli, R.; Pulvirenti, G.; Tranquilli, C.; Foti, C.; Viru, M.; et al. Effect of oral creatine supplementation on jumping and running performance. J. Sports Med.1997, 18, 369–372. [Google Scholar] [CrossRef]
- Dabidi Roshan, V.; Babaei, H.; Hosseinzadeh, M.; Arendt-Nielsen, L. The effect of creatine supplementation on muscle fatigue and physiological indices following intermittent swimming bouts. Sports Med. Phys. Fit.2013, 53, 232–239. [Google Scholar]
- Selsby, J.T.; Beckett, K.D.; Kern, M.; Devor, S.T. Swim performance following creatine supplementation in Division III athletes. Strength Cond. Res.2003, 17, 421–424. [Google Scholar]
- Leenders, N.M.; Lamb, D.R.; Nelson, T.E. Creatine supplementation and swimming performance. J. Sport Nutr.1999, 9, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Peyrebrune, M.C.; Nevill, M.E.; Donaldson, F.J.; Cosford, D.J. The effects of oral creatine supplementation on performance in single and repeated sprint swimming. Sports Sci.1998, 16, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, K.; Goris, M.; Van Hecke, P.; Van Leemputte, M.; Vangerven, L.; Hespel, P. Long-term creatine intake is beneficial to muscle performance during resistance training. Appl. Physiol.1997, 83, 2055–2063. [Google Scholar] [CrossRef] [PubMed]
- Tarnopolsky, M.A.; MacLennan, D.P. Creatine monohydrate supplementation enhances high-intensity exercise performance in males and females. J. Sport Nutr. Exerc. Metab.2000, 10, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Ziegenfuss, T.N.; Rogers, M.; Lowery, L.; Mullins, N.; Mendel, R.; Antonio, J.; Lemon, P. Effect of creatine loading on anaerobic performance and skeletal muscle volume in NCAA Division I athletes. Nutrition2002, 18, 397–402. [Google Scholar] [CrossRef]
- Benton, D.; Donohoe, R. The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. J. Nutr.2011, 105, 1100–1105. [Google Scholar] [CrossRef][Green Version]
- Johannsmeyer, S.; Candow, D.G.; Brahms, C.M.; Michel, D.; Zello, G.A. Effect of creatine supplementation and drop-set resistance training in untrained aging adults. Gerontol.2016, 83, 112–119. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S.; American Dietetic, A.; Dietitians of, C.; American College of Sports Medicine, N.; Athletic, P. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. Am. Diet. Assoc.2009, 109, 509–527. [Google Scholar]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. Acad. Nutr. Diet.2016, 116, 501–528. [Google Scholar] [CrossRef]
- Gualano, B.; Rawson, E.S.; Candow, D.G.; Chilibeck, P.D. Creatine supplementation in the aging population: Effects on skeletal muscle, bone and brain. Amino Acids2016, 48, 1793–1805. [Google Scholar] [CrossRef]
- Earnest, C.P.; Almada, A.L.; Mitchell, T.L. High-performance capillary electrophoresis-pure creatine monohydrate reduces blood lipids in men and women. Sci.1996, 91, 113–118. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.P.; Leonard, K.A.; Jacobs, R.L. Dietary creatine supplementation lowers hepatic triacylglycerol by increasing lipoprotein secretion in rats fed high-fat diet. Nutr. Biochem.2017, 50, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Deminice, R.; de Castro, G.S.; Francisco, L.V.; da Silva, L.E.; Cardoso, J.F.; Frajacomo, F.T.; Teodoro, B.G.; Dos Reis Silveira, L.; Jordao, A.A. Creatine supplementation prevents fatty liver in rats fed choline-deficient diet: A burden of one-carbon and fatty acid metabolism. Nutr. Biochem.2015, 26, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Deminice, R.; Cella, P.S.; Padilha, C.S.; Borges, F.H.; da Silva, L.E.; Campos-Ferraz, P.L.; Jordao, A.A.; Robinson, J.L.; Bertolo, R.F.; Cecchini, R.; et al. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats. Amino Acids2016, 48, 2015–2024. [Google Scholar] [CrossRef] [PubMed]
- Lawler, J.M.; Barnes, W.S.; Wu, G.; Song, W.; Demaree, S. Direct antioxidant properties of creatine. Biophys. Res. Commun.2002, 290, 47–52. [Google Scholar] [CrossRef]
- Rakpongsiri, K.; Sawangkoon, S. Protective effect of creatine supplementation and estrogen replacement on cardiac reserve function and antioxidant reservation against oxidative stress in exercise-trained ovariectomized hamsters. Heart J.2008, 49, 343–354. [Google Scholar] [CrossRef][Green Version]
- Rahimi, R.; Mirzaei, B.; Rahmani-Nia, F.; Salehi, Z. Effects of creatine monohydrate supplementation on exercise-induced apoptosis in athletes: A randomized, double-blind, and placebo-controlled study. Res. Med. Sci.2015, 20, 733–738. [Google Scholar] [CrossRef]
- Deminice, R.; Jordao, A.A. Creatine supplementation decreases plasma lipid peroxidation markers and enhances anaerobic performance in rats. Redox Rep. [Google Scholar] [CrossRef]
- Op’t Eijnde, B.; Urso, B.; Richter, E.A.; Greenhaff, P.L.; Hespel, P. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes2001, 50, 18–23. [Google Scholar] [CrossRef][Green Version]
- Gualano, B.; V, D.E.S.P.; Roschel, H.; Artioli, G.G.; Neves, M., Jr.; De Sa Pinto, A.L.; Da Silva, M.E.; Cunha, M.R.; Otaduy, M.C.; Leite Cda, C.; et al. Creatine in type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Sci. Sports Exerc.2011, 43, 770–778. [Google Scholar] [CrossRef]
- Op’t Eijnde, B.; Jijakli, H.; Hespel, P.; Malaisse, W.J. Creatine supplementation increases soleus muscle creatine content and lowers the insulinogenic index in an animal model of inherited type 2 diabetes. J. Mol. Med.2006, 17, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.R.; Ferreira, J.C.; de Siqueira-Filho, M.A.; Carvalho, C.R.; Lancha, A.H., Jr.; Gualano, B. Creatine-induced glucose uptake in type 2 diabetes: A role for AMPK-alpha? Amino Acids2012, 43, 1803–1807. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Ghosh, A.; Roy, S.S.; Bera, S.; Das, M.; Talukdar, D.; Ray, S.; Wallimann, T.; Ray, M. A short review on creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids2012, 42, 2319–2330. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.D.P.; Howell, S.L.; Teixeira, F.J.; Pimentel, G.D. Dietary Amino Acids and Immunonutrition Supplementation in Cancer-Induced Skeletal Muscle Mass Depletion: A Mini-Review. Pharm. Des.2020, 26, 970–978. [Google Scholar] [CrossRef]
- Cella, P.S.; Marinello, P.C.; Borges, F.H.; Ribeiro, D.F.; Chimin, P.; Testa, M.T.J.; Guirro, P.B.; Duarte, J.A.; Cecchini, R.; Guarnier, F.A.; et al. Creatine supplementation in Walker-256 tumor-bearing rats prevents skeletal muscle atrophy by attenuating systemic inflammation and protein degradation signaling. J. Nutr.2020, 59, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Roy, A.; Ray, M. Creatine supplementation with methylglyoxal: A potent therapy for cancer in experimental models. Amino Acids2016, 48, 2003–2013. [Google Scholar] [CrossRef]
- Canete, S.; San Juan, A.F.; Perez, M.; Gomez-Gallego, F.; Lopez-Mojares, L.M.; Earnest, C.P.; Fleck, S.J.; Lucia, A. Does creatine supplementation improve functional capacity in elderly women? Strength Cond. Res.2006, 20, 22–28. [Google Scholar] [CrossRef]
- Candow, D.G.; Zello, G.A.; Ling, B.; Farthing, J.P.; Chilibeck, P.D.; McLeod, K.; Harris, J.; Johnson, S. Comparison of creatine supplementation before versus after supervised resistance training in healthy older adults. Sports Med.2014, 22, 61–74. [Google Scholar] [CrossRef]
- Chilibeck, P.D.; Candow, D.G.; Landeryou, T.; Kaviani, M.; Paus-Jenssen, L. Effects of Creatine and Resistance Training on Bone Health in Postmenopausal Women. Sci. Sports Exerc.2015, 47, 1587–1595. [Google Scholar] [CrossRef]
- O’Bryan, K.R.; Doering, T.M.; Morton, R.W.; Coffey, V.G.; Phillips, S.M.; Cox, G.R. Do multi-ingredient protein supplements augment resistance training-induced gains in skeletal muscle mass and strength? A systematic review and meta-analysis of 35 trials. J. Sports Med.2020, 54, 573–581. [Google Scholar] [CrossRef][Green Version]
- Nilsson, M.I.; Mikhail, A.; Lan, L.; Di Carlo, A.; Hamilton, B.; Barnard, K.; Hettinga, B.P.; Hatcher, E.; Tarnopolsky, M.G.; Nederveen, J.P.; et al. A Five-Ingredient Nutritional Supplement and Home-Based Resistance Exercise Improve Lean Mass and Strength in Free-Living Elderly. Nutrients2020, 12, 2391. [Google Scholar] [CrossRef] [PubMed]
- Gielen, E.; Beckwee, D.; Delaere, A.; De Breucker, S.; Vandewoude, M.; Bautmans, I.; Sarcopenia Guidelines Development Group of the Belgian Society of Geriatrics. Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: An umbrella review of systematic reviews and meta-analyses. Rev.2020. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Guthrie, N.; Pezzullo, J.; Sanli, T.; Fielding, R.A.; Bellamine, A. Efficacy of a novel formulation of L-Carnitine, creatine, and leucine on lean body mass and functional muscle strength in healthy older adults: A randomized, double-blind placebo-controlled study. Metab.2017, 14, 7. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sales, L.P.; Pinto, A.J.; Rodrigues, S.F.; Alvarenga, J.C.; Goncalves, N.; Sampaio-Barros, M.M.; Benatti, F.B.; Gualano, B.; Rodrigues Pereira, R.M. Creatine Supplementation (3 g/d) and Bone Health in Older Women: A 2-Year, Randomized, Placebo-Controlled Trial. Gerontol. A Biol. Sci. Med. Sci.2020, 75, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, R.C.; Ozaki, G.A.T.; Garcia, T.A.; Giometti, I.C.; Koike, T.E.; Camargo, R.C.T.; Dos Santos Pereira, J.D.A.; Constantino, C.J.L.; Louzada, M.J.Q.; Camargo Filho, J.C.S.; et al. Effects of muscular strength training and growth hormone (GH) supplementation on femoral bone tissue: Analysis by Raman spectroscopy, dual-energy X-ray absorptiometry, and mechanical resistance. Lasers Med. Sci.2020, 35, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Laskou, F.; Dennison, E. Interaction of Nutrition and Exercise on Bone and Muscle. Endocrinol.2019, 15, 11–12. [Google Scholar] [CrossRef]
- Candow, D.G.; Forbes, S.C.; Vogt, E. Effect of pre-exercise and post-exercise creatine supplementation on bone mineral content and density in healthy aging adults. Gerontol.2019, 119, 89–92. [Google Scholar] [CrossRef]
- Rawson, E.S.; Miles, M.P.; Larson-Meyer, D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. J. Sport Nutr. Exerc. Metab.2018, 28, 188–199. [Google Scholar] [CrossRef][Green Version]
- Forbes, S.C.; Chilibeck, P.D.; Candow, D.G. Creatine Supplementation During Resistance Training Does Not Lead to Greater Bone Mineral Density in Older Humans: A Brief Meta-Analysis. Nutr.2018, 5, 27. [Google Scholar] [CrossRef][Green Version]
- Cornish, S.M.; Peeler, J.D. No effect of creatine monohydrate supplementation on inflammatory and cartilage degradation biomarkers in individuals with knee osteoarthritis. Res.2018, 51, 57–66. [Google Scholar] [CrossRef]
- Alves, C.R.; Santiago, B.M.; Lima, F.R.; Otaduy, M.C.; Calich, A.L.; Tritto, A.C.; de Sa Pinto, A.L.; Roschel, H.; Leite, C.C.; Benatti, F.B.; et al. Creatine supplementation in fibromyalgia: A randomized, double-blind, placebo-controlled trial. Arthritis Care Res.2013, 65, 1449–1459. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bell, K.E.; Fang, H.; Snijders, T.; Allison, D.J.; Zulyniak, M.A.; Chabowski, A.; Parise, G.; Phillips, S.M.; Heisz, J.J. A Multi-Ingredient Nutritional Supplement in Combination With Resistance Exercise and High-Intensity Interval Training Improves Cognitive Function and Increases N-3 Index in Healthy Older Men: A Randomized Controlled Trial. Aging Neurosci.2019, 11, 107. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Scholey, A. Nutrients for neurocognition in health and disease: Measures, methodologies and mechanisms. Nutr. Soc.2018, 77, 73–83. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Merege-Filho, C.A.; Otaduy, M.C.; de Sa-Pinto, A.L.; de Oliveira, M.O.; de Souza Goncalves, L.; Hayashi, A.P.; Roschel, H.; Pereira, R.M.; Silva, C.A.; Brucki, S.M.; et al. Does brain creatine content rely on exogenous creatine in healthy youth? A proof-of-principle study. Physiol. Nutr. Metab.2017, 42, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.E.; Byblow, W.D.; Gant, N. Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. Neurosci.2015, 35, 1773–1780. [Google Scholar] [CrossRef]
- Rawson, E.S.; Lieberman, H.R.; Walsh, T.M.; Zuber, S.M.; Harhart, J.M.; Matthews, T.C. Creatine supplementation does not improve cognitive function in young adults. Behav.2008, 95, 130–134. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T.; Harris, R.C.; Howard, A.N.; Langridge, G.; Hall, B.; Corbett, J.; Dicks, M.; Hodgson, C. Creatine supplementation, sleep deprivation, cortisol, melatonin and behavior. Behav.2007, 90, 21–28. [Google Scholar] [CrossRef]
- Roitman, S.; Green, T.; Osher, Y.; Karni, N.; Levine, J. Creatine monohydrate in resistant depression: A preliminary study. Bipolar Disord.2007, 9, 754–758. [Google Scholar] [CrossRef]
- D’Anci, K.E.; Allen, P.J.; Kanarek, R.B. A potential role for creatine in drug abuse? Neurobiol.2011, 44, 136–141. [Google Scholar] [CrossRef]
- Balestrino, M.; Adriano, E. Beyond sports: Efficacy and safety of creatine supplementation in pathological or paraphysiological conditions of brain and muscle. Res. Rev.2019, 39, 2427–2459. [Google Scholar] [CrossRef]
- Toniolo, R.A.; Silva, M.; Fernandes, F.B.F.; Amaral, J.; Dias, R.D.S.; Lafer, B. A randomized, double-blind, placebo-controlled, proof-of-concept trial of creatine monohydrate as adjunctive treatment for bipolar depression. Neural Transm.2018, 125, 247–257. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brose, A.; Parise, G.; Tarnopolsky, M.A. Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. Gerontol. A Biol. Sci. Med. Sci.2003, 58, 11–19. [Google Scholar] [CrossRef] [PubMed][Green Version]
- McMorris, T.; Harris, R.C.; Swain, J.; Corbett, J.; Collard, K.; Dyson, R.J.; Dye, L.; Hodgson, C.; Draper, N. Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology2006, 185, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Bernat, P.; Candow, D.G.; Gryzb, K.; Butchart, S.; Schoenfeld, B.J.; Bruno, P. Effects of high-velocity resistance training and creatine supplementation in untrained healthy aging males. Physiol. Nutr. Metab.2019, 44, 1246–1253. [Google Scholar] [CrossRef][Green Version]
- Forbes, S.C.; Candow, D.G.; Krentz, J.R.; oberts, M.D.; Young, K.C. Changes in Fat Mass Following Creatine Supplementation and Resistance Training in Adults ≥50 Years of Age: A Meta-Analysis. Funct. Morphol. Kinesio.2019, 4, 62. [Google Scholar] [CrossRef][Green Version]
- Rae, C.; Digney, A.L.; McEwan, S.R.; Bates, T.C. Oral creatine monohydrate supplementation improves brain performance: A double-blind, placebo-controlled, cross-over trial. Biol. Sci.2003, 270, 2147–2150. [Google Scholar] [CrossRef][Green Version]
- Ling, J.; Kritikos, M.; Tiplady, B. Cognitive effects of creatine ethyl ester supplementation. Pharmacol.2009, 20, 673–679. [Google Scholar] [CrossRef][Green Version]
- Robinson, J.L.; McBreairty, L.E.; Ryan, R.A.; Randunu, R.; Walsh, C.J.; Martin, G.M.; Brunton, J.A.; Bertolo, R.F. Effects of supplemental creatine and guanidinoacetic acid on spatial memory and the brain of weaned Yucatan miniature pigs. PLoS ONE2020, 15, e0226806. [Google Scholar] [CrossRef]
- Watanabe, A.; Kato, N.; Kato, T. Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Res.2002, 42, 279–285. [Google Scholar]
- Rooney, K.; Bryson, J.; Phuyal, J.; Denyer, G.; Caterson, I.; Thompson, C. Creatine supplementation alters insulin secretion and glucose homeostasis in vivo. Metabolism2002, 51, 518–522. [Google Scholar] [CrossRef]
- Newman, J.E.; Hargreaves, M.; Garnham, A.; Snow, R.J. Effect of creatine ingestion on glucose tolerance and insulin sensitivity in men. Sci. Sports Exerc.2003, 35, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, M.; Kreider, R.B.; Earnest, C.P.; Rasmussen, C.; Almada, A. Differences in creatine retention among three nutritional formulations of oral creatine supplements. Exerc. Physiol. Online2003, 6, 37–43. [Google Scholar]
- Steenge, G.R.; Simpson, E.J.; Greenhaff, P.L. Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. Appl. Physiol.2000, 89, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.G.; Arnall, D.A.; Kokkonen, J.; Day, R.; Evans, J. Muscle glycogen supercompensation is enhanced by prior creatine supplementation. Sci. Sports Exerc.2001, 33, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Gualano, B.; Artioli, G.G.; Poortmans, J.R.; Lancha Junior, A.H. Exploring the therapeutic role of creatine supplementation. Amino Acids2010, 38, 31–44. [Google Scholar] [CrossRef]
- Hultman, J.; Ronquist, G.; Forsberg, J.O.; Hansson, H.E. Myocardial energy restoration of ischemic damage by administration of phosphoenolpyruvate during reperfusion. A study in a paracorporeal rat heart model. Surg. Res.1983, 15, 200–207. [Google Scholar]
- Thelin, S.; Hultman, J.; Ronquist, G.; Hansson, H.E. Metabolic and functional effects of creatine phosphate in cardioplegic solution. Studies on rat hearts during and after normothermic ischemia. J. Thorac. Cardiovasc. Surg.1987, 21, 39–45. [Google Scholar]
- Osbakken, M.; Ito, K.; Zhang, D.; Ponomarenko, I.; Ivanics, T.; Jahngen, E.G.; Cohn, M. Creatine and cyclocreatine effects on ischemic myocardium: 31P nuclear magnetic resonance evaluation of intact heart. Cardiology1992, 80, 184–195. [Google Scholar]
- Thorelius, J.; Thelin, S.; Ronquist, G.; Halden, E.; Hansson, H.E. Biochemical and functional effects of creatine phosphate in cardioplegic solution during aortic valve surgery–A clinical study. Cardiovasc. Surg.1992, 40, 10–13. [Google Scholar] [CrossRef]
- Boudina, S.; Laclau, M.N.; Tariosse, L.; Daret, D.; Gouverneur, G.; Bonoron-Adele, S.; Saks, V.A.; Dos Santos, P. Alteration of mitochondrial function in a model of chronic ischemia in vivo in rat heart. J. Physiol. Heart Circ. Physiol.2002, 282, H821–H831. [Google Scholar] [CrossRef][Green Version]
- Laclau, M.N.; Boudina, S.; Thambo, J.B.; Tariosse, L.; Gouverneur, G.; Bonoron-Adele, S.; Saks, V.A.; Garlid, K.D.; Dos Santos, P. Cardioprotection by ischemic preconditioning preserves mitochondrial function and functional coupling between adenine nucleotide translocase and creatine kinase. Mol. Cell Cardiol.2001, 33, 947–956. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Conorev, E.A.; Sharov, V.G.; Saks, V.A. Improvement in contractile recovery of isolated rat heart after cardioplegic ischaemic arrest with endogenous phosphocreatine: Involvement of antiperoxidative effect? Res.1991, 25, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Sharov, V.G.; Saks, V.A.; Kupriyanov, V.V.; Lakomkin, V.L.; Kapelko, V.I.; Steinschneider, A.; Javadov, S.A. Protection of ischemic myocardium by exogenous phosphocreatine. I. Morphologic and phosphorus 31-nuclear magnetic resonance studies. Thorac. Cardiovasc. Surg.1987, 94, 749–761. [Google Scholar] [CrossRef]
- Anyukhovsky, E.P.; Javadov, S.A.; Preobrazhensky, A.N.; Beloshapko, G.G.; Rosenshtraukh, L.V.; Saks, V.A. Effect of phosphocreatine and related compounds on the phospholipid metabolism of ischemic heart. Med. Metab. Biol.1986, 35, 327–334. [Google Scholar]
- Sharov, V.G.; Afonskaya, N.I.; Ruda, M.Y.; Cherpachenko, N.M.; Pozin, E.; Markosyan, R.A.; Shepeleva, I.I.; Samarenko, M.B.; Saks, V.A. Protection of ischemic myocardium by exogenous phosphocreatine (neoton): Pharmacokinetics of phosphocreatine, reduction of infarct size, stabilization of sarcolemma of ischemic cardiomyocytes, and antithrombotic action. Med. Metab. Biol.1986, 35, 101–114. [Google Scholar] [CrossRef]
- Perasso, L.; Spallarossa, P.; Gandolfo, C.; Ruggeri, P.; Balestrino, M. Therapeutic use of creatine in brain or heart ischemia: Available data and future perspectives. Res. Rev.2013, 33, 336–363. [Google Scholar] [CrossRef]
- Gordon, A.; Hultman, E.; Kaijser, L.; Kristjansson, S.; Rolf, C.J.; Nyquist, O.; Sylven, C. Creatine supplementation in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Res.1995, 30, 413–418. [Google Scholar] [CrossRef]
- Andrews, R.; Greenhaff, P.; Curtis, S.; Perry, A.; Cowley, A.J. The effect of dietary creatine supplementation on skeletal muscle metabolism in congestive heart failure. Heart J.1998, 19, 617–622. [Google Scholar] [CrossRef][Green Version]
- Kuethe, F.; Krack, A.; Richartz, B.M.; Figulla, H.R. Creatine supplementation improves muscle strength in patients with congestive heart failure. Pharmazie2006, 61, 218–222. [Google Scholar]
- Fumagalli, S.; Fattirolli, F.; Guarducci, L.; Cellai, T.; Baldasseroni, S.; Tarantini, F.; Di Bari, M.; Masotti, G.; Marchionni, N. Coenzyme Q10 terclatrate and creatine in chronic heart failure: A randomized, placebo-controlled, double-blind study. Cardiol.2011, 34, 211–217. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Rassi, S.; Fontana, K.E.; Kde, S.C.; Feitosa, R.H. Influence of creatine supplementation on the functional capacity of patients with heart failure. Bras. Cardiol.2012, 99, 623–629. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sykut-Cegielska, J.; Gradowska, W.; Mercimek-Mahmutoglu, S.; Stockler-Ipsiroglu, S. Biochemical and clinical characteristics of creatine deficiency syndromes. Acta Biochim. Pol.2004, 51, 875–882. [Google Scholar] [PubMed]
- Freissmuth, M.; Stockner, T.; Sucic, S. SLC6 Transporter Folding Diseases and Pharmacochaperoning. Exp. Pharmacol.2018, 245, 249–270. [Google Scholar] [CrossRef] [PubMed]
- van de Kamp, J.M.; Mancini, G.M.; Salomons, G.S. X-linked creatine transporter deficiency: Clinical aspects and pathophysiology. Inherit. Metab. Dis.2014, 37, 715–733. [Google Scholar] [CrossRef]
- Mercimek-Mahmutoglu, S.; Salomons, G.S. Creatine Deficiency Syndromes. In GeneReviews(R); Pagon, R.A., Adam, M.P., Ardinger, H.H., Wallace, S.E., Amemiya, A., Bean, L.J.H., Bird, T.D., Ledbetter, N., Mefford, H.C., Smith, R.J.H., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Stockler-Ipsiroglu, S.; van Karnebeek, C.D. Cerebral creatine deficiencies: A group of treatable intellectual developmental disorders. Neurol.2014, 34, 350–356. [Google Scholar] [CrossRef]
- Joncquel-Chevalier Curt, M.; Voicu, P.M.; Fontaine, M.; Dessein, A.F.; Porchet, N.; Mention-Mulliez, K.; Dobbelaere, D.; Soto-Ares, G.; Cheillan, D.; Vamecq, J. Creatine biosynthesis and transport in health and disease. Biochimie2015, 119, 146–165. [Google Scholar] [CrossRef]
- Cameron, J.M.; Levandovskiy, V.; Roberts, W.; Anagnostou, E.; Scherer, S.; Loh, A.; Schulze, A. Variability of Creatine Metabolism Genes in Children with Autism Spectrum Disorder. J. Mol. Sci.2017, 18, 1665. [Google Scholar] [CrossRef][Green Version]
- Salazar, M.D.; Zelt, N.B.; Saldivar, R.; Kuntz, C.P.; Chen, S.; Penn, W.D.; Bonneau, R.; Leman, J.K.; Schlebach, J.P. Classification of the Molecular Defects Associated with Pathogenic Variants of the SLC6A8 Creatine Transporter. Biochemistry2020, 59, 1367–1377. [Google Scholar] [CrossRef]
- Longo, N.; Ardon, O.; Vanzo, R.; Schwartz, E.; Pasquali, M. Disorders of creatine transport and metabolism. J. Med. Genet. C Semin Med. Genet.2011, 157C, 72–78. [Google Scholar] [CrossRef]
- Nasrallah, F.; Feki, M.; Kaabachi, N. Creatine and creatine deficiency syndromes: Biochemical and clinical aspects. Neurol.2010, 42, 163–171. [Google Scholar] [CrossRef]
- Mercimek-Mahmutoglu, S.; Stoeckler-Ipsiroglu, S.; Adami, A.; Appleton, R.; Araujo, H.C.; Duran, M.; Ensenauer, R.; Fernandez-Alvarez, E.; Garcia, P.; Grolik, C.; et al. GAMT deficiency: Features, treatment, and outcome in an inborn error of creatine synthesis. Neurology2006, 67, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Stromberger, C.; Bodamer, O.A.; Stockler-Ipsiroglu, S. Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. Inherit. Metab. Dis.2003, 26, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.C.; Tosetti, M.; Battini, R.; Leuzzi, V.; Alessandri, M.G.; Carducci, C.; Antonozzi, I.; Cioni, G. Treatment monitoring of brain creatine deficiency syndromes: A 1H- and 31P-MR spectroscopy study. AJNR Am. J. Neuroradiol.2007, 28, 548–554. [Google Scholar] [PubMed]
- Battini, R.; Alessandri, M.G.; Leuzzi, V.; Moro, F.; Tosetti, M.; Bianchi, M.C.; Cioni, G. Arginine:glycine amidinotransferase (AGAT) deficiency in a newborn: Early treatment can prevent phenotypic expression of the disease. Pediatr.2006, 148, 828–830. [Google Scholar] [CrossRef] [PubMed]
- Stockler-Ipsiroglu, S.; van Karnebeek, C.; Longo, N.; Korenke, G.C.; Mercimek-Mahmutoglu, S.; Marquart, I.; Barshop, B.; Grolik, C.; Schlune, A.; Angle, B.; et al. Guanidinoacetate methyltransferase (GAMT) deficiency: Outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Genet. Metab.2014, 111, 16–25. [Google Scholar] [CrossRef]
- Valtonen, M.; Nanto-Salonen, K.; Jaaskelainen, S.; Heinanen, K.; Alanen, A.; Heinonen, O.J.; Lundbom, N.; Erkintalo, M.; Simell, O. Central nervous system involvement in gyrate atrophy of the choroid and retina with hyperornithinaemia. Inherit. Metab. Dis.1999, 22, 855–866. [Google Scholar] [CrossRef]
- Nanto-Salonen, K.; Komu, M.; Lundbom, N.; Heinanen, K.; Alanen, A.; Sipila, I.; Simell, O. Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology1999, 53, 303–307. [Google Scholar] [CrossRef]
- Heinanen, K.; Nanto-Salonen, K.; Komu, M.; Erkintalo, M.; Alanen, A.; Heinonen, O.J.; Pulkki, K.; Nikoskelainen, E.; Sipila, I.; Simell, O. Creatine corrects muscle 31P spectrum in gyrate atrophy with hyperornithinaemia. J. Clin. Investig.1999, 29, 1060–1065. [Google Scholar] [CrossRef]
- Vannas-Sulonen, K.; Sipila, I.; Vannas, A.; Simell, O.; Rapola, J. Gyrate atrophy of the choroid and retina. A five-year follow-up of creatine supplementation. Ophthalmology1985, 92, 1719–1727. [Google Scholar] [CrossRef]
- Sipila, I.; Rapola, J.; Simell, O.; Vannas, A. Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. Engl. J. Med.1981, 304, 867–870. [Google Scholar] [CrossRef]
- Evangeliou, A.; Vasilaki, K.; Karagianni, P.; Nikolaidis, N. Clinical applications of creatine supplementation on paediatrics. Pharm. Biotechnol.2009, 10, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, K.T.; Knijff, W.A.; Soorani-Lunsing, R.J.; Sijens, P.E.; Verhoeven, N.M.; Salomons, G.S.; Goorhuis-Brouwer, S.M.; van Spronsen, F.J. Global developmental delay in guanidionacetate methyltransferase deficiency: Differences in formal testing and clinical observation. J. Pediatr.2007, 166, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, V.; Johnson, A.; Connelly, A.; Eckhardt, S.; Surtees, R.A. Guanidinoacetate methyltransferase deficiency: New clinical features. Neurol.1997, 17, 155–157. [Google Scholar] [CrossRef]
- Ensenauer, R.; Thiel, T.; Schwab, K.O.; Tacke, U.; Stockler-Ipsiroglu, S.; Schulze, A.; Hennig, J.; Lehnert, W. Guanidinoacetate methyltransferase deficiency: Differences of creatine uptake in human brain and muscle. Genet. Metab.2004, 82, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Adhihetty, P.J.; Beal, M.F. Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Med.2008, 10, 275–290. [Google Scholar] [CrossRef][Green Version]
- Verbessem, P.; Lemiere, J.; Eijnde, B.O.; Swinnen, S.; Vanhees, L.; Van Leemputte, M.; Hespel, P.; Dom, R. Creatine supplementation in Huntington’s disease: A placebo-controlled pilot trial. Neurology2003, 61, 925–930. [Google Scholar] [CrossRef]
- Dedeoglu, A.; Kubilus, J.K.; Yang, L.; Ferrante, K.L.; Hersch, S.M.; Beal, M.F.; Ferrante, R.J. Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. Neurochem.2003, 85, 1359–1367. [Google Scholar]
- Andreassen, O.A.; Dedeoglu, A.; Ferrante, R.J.; Jenkins, B.G.; Ferrante, K.L.; Thomas, M.; Friedlich, A.; Browne, S.E.; Schilling, G.; Borchelt, D.R.; et al. Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Dis.2001, 8, 479–491. [Google Scholar] [CrossRef][Green Version]
- Ferrante, R.J.; Andreassen, O.A.; Jenkins, B.G.; Dedeoglu, A.; Kuemmerle, S.; Kubilus, J.K.; Kaddurah-Daouk, R.; Hersch, S.M.; Beal, M.F. Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. Neurosci.2000, 20, 4389–4397. [Google Scholar] [CrossRef][Green Version]
- Matthews, R.T.; Yang, L.; Jenkins, B.G.; Ferrante, R.J.; Rosen, B.R.; Kaddurah-Daouk, R.; Beal, M.F. Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. Neurosci.1998, 18, 156–163. [Google Scholar]
- Bender, A.; Samtleben, W.; Elstner, M.; Klopstock, T. Long-term creatine supplementation is safe in aged patients with Parkinson disease. Res.2008, 28, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.; Koch, W.; Elstner, M.; Schombacher, Y.; Bender, J.; Moeschl, M.; Gekeler, F.; Muller-Myhsok, B.; Gasser, T.; Tatsch, K.; et al. Creatine supplementation in Parkinson disease: A placebo-controlled randomized pilot trial. Neurology2006, 67, 1262–1264. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Silva, S.; Neves-Carvalho, A.; Soares-Cunha, C.; Silva, J.M.; Teixeira-Castro, A.; Vieira, R.; Silva-Fernandes, A.; Maciel, P. Neuroprotective Effects of Creatine in the CMVMJD135 Mouse Model of Spinocerebellar Ataxia Type 3. Disord.2018, 33, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Komura, K.; Hobbiebrunken, E.; Wilichowski, E.K.; Hanefeld, F.A. Effectiveness of creatine monohydrate in mitochondrial encephalomyopathies. Neurol.2003, 28, 53–58. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A.; Parise, G. Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve1999, 22, 1228–1233. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A.; Roy, B.D.; MacDonald, J.R. A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve1997, 20, 1502–1509. [Google Scholar] [CrossRef]
- Gowayed, M.A.; Mahmoud, S.A.; El-Sayed, Y.; Abu-Samra, N.; Kamel, M.A. Enhanced mitochondrial biogenesis is associated with the ameliorative action of creatine supplementation in rat soleus and cardiac muscles. Ther. Med.2020, 19, 384–392. [Google Scholar] [CrossRef][Green Version]
- Andreassen, O.A.; Jenkins, B.G.; Dedeoglu, A.; Ferrante, K.L.; Bogdanov, M.B.; Kaddurah-Daouk, R.; Beal, M.F. Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. Neurochem.2001, 77, 383–390. [Google Scholar] [CrossRef][Green Version]
- Choi, J.K.; Kustermann, E.; Dedeoglu, A.; Jenkins, B.G. Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. J. Neurosci.2009, 30, 2143–2150. [Google Scholar] [CrossRef][Green Version]
- Derave, W.; Van Den Bosch, L.; Lemmens, G.; Eijnde, B.O.; Robberecht, W.; Hespel, P. Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: Effects of creatine treatment. Dis.2003, 13, 264–272. [Google Scholar] [CrossRef]
- Drory, V.E.; Gross, D. No effect of creatine on respiratory distress in amyotrophic lateral sclerosis. Lateral. Scler Other Motor. Neuron. Disord.2002, 3, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.C.; Rosenfeld, J. The role of creatine in the management of amyotrophic lateral sclerosis and other neurodegenerative disorders. CNS Drugs2004, 18, 967–980. [Google Scholar] [PubMed]
- Mazzini, L.; Balzarini, C.; Colombo, R.; Mora, G.; Pastore, I.; De Ambrogio, R.; Caligari, M. Effects of creatine supplementation on exercise performance and muscular strength in amyotrophic lateral sclerosis: Preliminary results. Neurol. Sci.2001, 191, 139–144. [Google Scholar] [CrossRef]
- Vielhaber, S.; Kaufmann, J.; Kanowski, M.; Sailer, M.; Feistner, H.; Tempelmann, C.; Elger, C.E.; Heinze, H.J.; Kunz, W.S. Effect of creatine supplementation on metabolite levels in ALS motor cortices. Neurol.2001, 172, 377–382. [Google Scholar] [CrossRef]
- Hijikata, Y.; Katsuno, M.; Suzuki, K.; Hashizume, A.; Araki, A.; Yamada, S.; Inagaki, T.; Ito, D.; Hirakawa, A.; Kinoshita, F.; et al. Treatment with Creatine Monohydrate in Spinal and Bulbar Muscular Atrophy: Protocol for a Randomized, Double-Blind, Placebo-Controlled Trial. JMIR Res. Protoc.2018, 7, e69. [Google Scholar] [CrossRef]
- Ogborn, D.I.; Smith, K.J.; Crane, J.D.; Safdar, A.; Hettinga, B.P.; Tupler, R.; Tarnopolsky, M.A. Effects of creatine and exercise on skeletal muscle of FRG1-transgenic mice. J. Neurol Sci.2012, 39, 225–231. [Google Scholar] [CrossRef][Green Version]
- Louis, M.; Lebacq, J.; Poortmans, J.R.; Belpaire-Dethiou, M.C.; Devogelaer, J.P.; Van Hecke, P.; Goubel, F.; Francaux, M. Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve2003, 27, 604–610. [Google Scholar] [CrossRef]
- Banerjee, B.; Sharma, U.; Balasubramanian, K.; Kalaivani, M.; Kalra, V.; Jagannathan, N.R. Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: A randomized, placebo-controlled 31P MRS study. Reson. Imaging2010, 28, 698–707. [Google Scholar] [CrossRef]
- Felber, S.; Skladal, D.; Wyss, M.; Kremser, C.; Koller, A.; Sperl, W. Oral creatine supplementation in Duchenne muscular dystrophy: A clinical and 31P magnetic resonance spectroscopy study. Res.2000, 22, 145–150. [Google Scholar] [CrossRef]
- Radley, H.G.; De Luca, A.; Lynch, G.S.; Grounds, M.D. Duchenne muscular dystrophy: Focus on pharmaceutical and nutritional interventions. J. Biochem. Cell Biol.2007, 39, 469–477. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A.; Mahoney, D.J.; Vajsar, J.; Rodriguez, C.; Doherty, T.J.; Roy, B.D.; Biggar, D. Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology2004, 62, 1771–1777. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kley, R.A.; Tarnopolsky, M.A.; Vorgerd, M. Creatine for treating muscle disorders. Cochrane Database Syst. Rev. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.W.; Takahashi, K. Cerebral energetic effects of creatine supplementation in humans. J. Physiol. Regul. Integr. Comp. Physiol.2007, 292, R1745–R1750. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ipsiroglu, O.S.; Stromberger, C.; Ilas, J.; Hoger, H.; Muhl, A.; Stockler-Ipsiroglu, S. Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species. Life Sci.2001, 69, 1805–1815. [Google Scholar] [CrossRef]
- Kley, R.A.; Vorgerd, M.; Tarnopolsky, M.A. Creatine for treating muscle disorders. Cochrane Database Syst. Rev. [Google Scholar] [CrossRef]
- Adcock, K.H.; Nedelcu, J.; Loenneker, T.; Martin, E.; Wallimann, T.; Wagner, B.P. Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Neurosci.2002, 24, 382–388. [Google Scholar] [CrossRef]
- Prass, K.; Royl, G.; Lindauer, U.; Freyer, D.; Megow, D.; Dirnagl, U.; Stockler-Ipsiroglu, G.; Wallimann, T.; Priller, J. Improved reperfusion and neuroprotection by creatine in a mouse model of stroke. Cereb. Blood Flow Metab.2007, 27, 452–459. [Google Scholar] [CrossRef]
- Zhu, S.; Li, M.; Figueroa, B.E.; Liu, A.; Stavrovskaya, I.G.; Pasinelli, P.; Beal, M.F.; Brown, R.H., Jr.; Kristal, B.S.; Ferrante, R.J.; et al. Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. Neurosci.2004, 24, 5909–5912. [Google Scholar] [CrossRef]
- Allah Yar, R.; Akbar, A.; Iqbal, F. Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice. Brain Res.2015, 1595, 92–100. [Google Scholar] [CrossRef]
- Ainsley Dean, P.J.; Arikan, G.; Opitz, B.; Sterr, A. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion2017, 2, CNC34. [Google Scholar] [CrossRef][Green Version]
- Freire Royes, L.F.; Cassol, G. The Effects of Creatine Supplementation and Physical Exercise on Traumatic Brain Injury. Mini Rev. Med. Chem.2016, 16, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.G.; Geiger, J.D.; Mattson, M.P.; Scheff, S.W. Dietary supplement creatine protects against traumatic brain injury. Neurol.2000, 48, 723–729. [Google Scholar] [CrossRef]
- Hausmann, O.N.; Fouad, K.; Wallimann, T.; Schwab, M.E. Protective effects of oral creatine supplementation on spinal cord injury in rats. Spinal Cord2002, 40, 449–456. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Amorim, S.; Teixeira, V.H.; Corredeira, R.; Cunha, M.; Maia, B.; Margalho, P.; Pires, J. Creatine or vitamin D supplementation in individuals with a spinal cord injury undergoing resistance training: A double-blinded, randomized pilot trial. Spinal Cord Med.2018, 41, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Rabchevsky, A.G.; Sullivan, P.G.; Fugaccia, I.; Scheff, S.W. Creatine diet supplement for spinal cord injury: Influences on functional recovery and tissue sparing in rats. Neurotrauma2003, 20, 659–669. [Google Scholar] [CrossRef]
- Jacobs, P.L.; Mahoney, E.T.; Cohn, K.A.; Sheradsky, L.F.; Green, B.A. Oral creatine supplementation enhances upper extremity work capacity in persons with cervical-level spinal cord injury. Phys. Med. Rehabil.2002, 83, 19–23. [Google Scholar] [CrossRef]
- Kendall, R.W.; Jacquemin, G.; Frost, R.; Burns, S.P. Creatine supplementation for weak muscles in persons with chronic tetraplegia: A randomized double-blind placebo-controlled crossover trial. Spinal Cord Med.2005, 28, 208–213. [Google Scholar]
- Perret, C.; Mueller, G.; Knecht, H. Influence of creatine supplementation on 800 m wheelchair performance: A pilot study. Spinal Cord2006, 44, 275–279. [Google Scholar] [CrossRef][Green Version]
- Fuld, J.P.; Kilduff, L.P.; Neder, J.A.; Pitsiladis, Y.; Lean, M.E.; Ward, S.A.; Cotton, M.M. Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease. Thorax2005, 60, 531–537. [Google Scholar] [CrossRef][Green Version]
- Griffiths, T.L.; Proud, D. Creatine supplementation as an exercise performance enhancer for patients with COPD? An idea to run with. Thorax2005, 60, 525–526. [Google Scholar] [CrossRef][Green Version]
- Faager, G.; Soderlund, K.; Skold, C.M.; Rundgren, S.; Tollback, A.; Jakobsson, P. Creatine supplementation and physical training in patients with COPD: A double blind, placebo-controlled study. J. Chron. Obs. Pulmon Dis.2006, 1, 445–453. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cooke, M.B.; Rybalka, E.; Williams, A.D.; Cribb, P.J.; Hayes, A. Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. Int. Soc. Sports Nutr.2009, 6, 13. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Roy, B.D.; de Beer, J.; Harvey, D.; Tarnopolsky, M.A. Creatine monohydrate supplementation does not improve functional recovery after total knee arthroplasty. Phys. Med. Rehabil.2005, 86, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Tyler, T.F.; Nicholas, S.J.; Hershman, E.B.; Glace, B.W.; Mullaney, M.J.; McHugh, M.P. The effect of creatine supplementation on strength recovery after anterior cruciate ligament (ACL) reconstruction: A randomized, placebo-controlled, double-blind trial. J. Sports Med.2004, 32, 383–388. [Google Scholar] [CrossRef]
- Ellery, S.J.; LaRosa, D.A.; Cullen-McEwen, L.A.; Brown, R.D.; Snow, R.J.; Walker, D.W.; Kett, M.M.; Dickinson, H. Renal dysfunction in early adulthood following birth asphyxia in male spiny mice, and its amelioration by maternal creatine supplementation during pregnancy. Res.2017. [Google Scholar] [CrossRef]
- LaRosa, D.A.; Ellery, S.J.; Snow, R.J.; Walker, D.W.; Dickinson, H. Maternal creatine supplementation during pregnancy prevents acute and long-term deficits in skeletal muscle after birth asphyxia: A study of structure and function of hind limb muscle in the spiny mouse. Res.2016, 80, 852–860. [Google Scholar] [CrossRef]
- Ellery, S.J.; LaRosa, D.A.; Kett, M.M.; Della Gatta, P.A.; Snow, R.J.; Walker, D.W.; Dickinson, H. Dietary creatine supplementation during pregnancy: A study on the effects of creatine supplementation on creatine homeostasis and renal excretory function in spiny mice. Amino Acids2016, 48, 1819–1830. [Google Scholar] [CrossRef]
- Dickinson, H.; Ellery, S.; Ireland, Z.; LaRosa, D.; Snow, R.; Walker, D.W. Creatine supplementation during pregnancy: Summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth2014, 14, 150. [Google Scholar] [CrossRef][Green Version]
- Bortoluzzi, V.T.; de Franceschi, I.D.; Rieger, E.; Wannmacher, C.M. Co-administration of creatine plus pyruvate prevents the effects of phenylalanine administration to female rats during pregnancy and lactation on enzymes activity of energy metabolism in cerebral cortex and hippocampus of the offspring. Res.2014, 39, 1594–1602. [Google Scholar] [CrossRef]
- Vallet, J.L.; Miles, J.R.; Rempel, L.A. Effect of creatine supplementation during the last week of gestation on birth intervals, stillbirth, and preweaning mortality in pigs. Anim Sci.2013, 91, 2122–2132. [Google Scholar] [CrossRef][Green Version]
- Ellery, S.J.; Ireland, Z.; Kett, M.M.; Snow, R.; Walker, D.W.; Dickinson, H. Creatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney. Res.2013, 73, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, H.; Ireland, Z.J.; Larosa, D.A.; O’Connell, B.A.; Ellery, S.; Snow, R.; Walker, D.W. Maternal dietary creatine supplementation does not alter the capacity for creatine synthesis in the newborn spiny mouse. Sci.2013, 20, 1096–1102. [Google Scholar] [CrossRef][Green Version]
- Ireland, Z.; Castillo-Melendez, M.; Dickinson, H.; Snow, R.; Walker, D.W. A maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia. Neuroscience2011, 194, 372–379. [Google Scholar] [CrossRef] [PubMed]
- De Guingand, D.L.; Ellery, S.J.; Davies-Tuck, M.L.; Dickinson, H. Creatine and pregnancy outcomes, a prospective cohort study in low-risk pregnant women: Study protocol. BMJ Open2019, 9, e026756. [Google Scholar] [CrossRef] [PubMed][Green Version]
- de Guingand, D.L.; Palmer, K.R.; Bilardi, J.E.; Ellery, S.J. Acceptability of dietary or nutritional supplementation in pregnancy (ADONS)—Exploring the consumer’s perspective on introducing creatine monohydrate as a pregnancy supplement. Midwifery2020, 82, 102599. [Google Scholar] [CrossRef]
- de Guingand, D.L.; Palmer, K.R.; Snow, R.J.; Davies-Tuck, M.L.; Ellery, S.J. Risk of Adverse Outcomes in Females Taking Oral Creatine Monohydrate: A Systematic Review and Meta-Analysis. Nutrients2020, 12. [Google Scholar] [CrossRef]
- Jagim, A.R.; Stecker, R.A.; Harty, P.S.; Erickson, J.L.; Kerksick, C.M. Safety of Creatine Supplementation in Active Adolescents and Youth: A Brief Review. Nutr.2018, 5, 115. [Google Scholar] [CrossRef]
- Rawson, E.S. The safety and efficacy of creatine monohydrate supplementation. Sport Sci. Exch.2018, 29, 1–6. [Google Scholar]
- Bohnhorst, B.; Geuting, T.; Peter, C.S.; Dordelmann, M.; Wilken, B.; Poets, C.F. Randomized, controlled trial of oral creatine supplementation (not effective) for apnea of prematurity. Pediatrics2004, 113, e303–e307. [Google Scholar] [CrossRef][Green Version]
- Leland, K.M.; McDonald, T.L.; Drescher, K.M. Effect of creatine, creatinine, and creatine ethyl ester on TLR expression in macrophages. Immunopharmacol.2011, 11, 1341–1347. [Google Scholar] [CrossRef][Green Version]
- Beraud, D.; Maguire-Zeiss, K.A. Misfolded alpha-synuclein and Toll-like receptors: Therapeutic targets for Parkinson’s disease. Relat. Disord.2012, 18 (Suppl. 1), S17–S20. [Google Scholar] [CrossRef][Green Version]
- De Paola, M.; Sestito, S.E.; Mariani, A.; Memo, C.; Fanelli, R.; Freschi, M.; Bendotti, C.; Calabrese, V.; Peri, F. Synthetic and natural small molecule TLR4 antagonists inhibit motoneuron death in cultures from ALS mouse model. Res.2016, 103, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Bassit, R.A.; Curi, R.; Costa Rosa, L.F. Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids2008, 35, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Deminice, R.; Rosa, F.T.; Franco, G.S.; Jordao, A.A.; de Freitas, E.C. Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition2013, 29, 1127–1132. [Google Scholar] [CrossRef][Green Version]
- Santos, R.V.; Bassit, R.A.; Caperuto, E.C.; Costa Rosa, L.F. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race. Life Sci.2004, 75, 1917–1924. [Google Scholar] [CrossRef]
- Garcia, M.; Santos-Dias, A.; Bachi, A.L.L.; Oliveira-Junior, M.C.; Andrade-Souza, A.S.; Ferreira, S.C.; Aquino-Junior, J.C.J.; Almeida, F.M.; Rigonato-Oliveira, N.C.; Oliveira, A.P.L.; et al. Creatine supplementation impairs airway inflammation in an experimental model of asthma involving P2 x 7 receptor. J. Immunol.2019, 49, 928–939. [Google Scholar] [CrossRef]
- Vieira, R.P.; Duarte, A.C.; Claudino, R.C.; Perini, A.; Santos, A.B.; Moriya, H.T.; Arantes-Costa, F.M.; Martins, M.A.; Carvalho, C.R.; Dolhnikoff, M. Creatine supplementation exacerbates allergic lung inflammation and airway remodeling in mice. J. Respir. Cell Mol. Biol.2007, 37, 660–667. [Google Scholar] [CrossRef]
- Almeida, F.M.; Oliveira-Junior, M.C.; Souza, R.A.; Petroni, R.C.; Soto, S.F.; Soriano, F.G.; Carvalho, P.T.; Albertini, R.; Damaceno-Rodrigues, N.R.; Lopes, F.D.; et al. Creatine supplementation attenuates pulmonary and systemic effects of lung ischemia and reperfusion injury. Heart Lung Transplant.2016, 35, 242–250. [Google Scholar] [CrossRef]
- Braegger, C.P.; Schlattner, U.; Wallimann, T.; Utiger, A.; Frank, F.; Schaefer, B.; Heizmann, C.W.; Sennhauser, F.H. Effects of creatine supplementation in cystic fibrosis: Results of a pilot study. Cyst. Fibros.2003, 2, 177–182. [Google Scholar] [CrossRef]
- Simpson, A.J.; Horne, S.; Sharp, P.; Sharps, R.; Kippelen, P. Effect of Creatine Supplementation on the Airways of Youth Elite Soccer Players. Sci. Sports Exerc.2019, 51, 1582–1590. [Google Scholar] [CrossRef]
- Miller, E.E.; Evans, A.E.; Cohn, M. Inhibition of rate of tumor growth by creatine and cyclocreatine. Natl. Acad. Sci. USA1993, 90, 3304–3308. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Rev.2000, 80, 1107–1213. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M. Postviral fatigue syndrome and creatine: A piece of the puzzle? Neurosci.2020. [Google Scholar] [CrossRef] [PubMed]
- Malatji, B.G.; Meyer, H.; Mason, S.; Engelke, U.F.H.; Wevers, R.A.; van Reenen, M.; Reinecke, C.J. A diagnostic biomarker profile for fibromyalgia syndrome based on an NMR metabolomics study of selected patients and controls. BMC Neurol.2017, 17, 88. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.; Lin, J.C.; Sheriff, S.; Maudsley, A.A.; Younger, J.W. Evidence of widespread metabolite abnormalities in Myalgic encephalomyelitis/chronic fatigue syndrome: Assessment with whole-brain magnetic resonance spectroscopy. Brain Imaging Behav.2020, 14, 562–572. [Google Scholar] [CrossRef] [PubMed]
- van der Schaaf, M.E.; De Lange, F.P.; Schmits, I.C.; Geurts, D.E.M.; Roelofs, K.; van der Meer, J.W.M.; Toni, I.; Knoop, H. Prefrontal Structure Varies as a Function of Pain Symptoms in Chronic Fatigue Syndrome. Psychiatry2017, 81, 358–365. [Google Scholar] [CrossRef]
- Amital, D.; Vishne, T.; Rubinow, A.; Levine, J. Observed effects of creatine monohydrate in a patient with depression and fibromyalgia. J. Psychiatry2006, 163, 1840–1841. [Google Scholar] [CrossRef]
- Leader, A.; Amital, D.; Rubinow, A.; Amital, H. An open-label study adding creatine monohydrate to ongoing medical regimens in patients with the fibromyalgia syndrome. N. Y. Acad. Sci.2009, 1173, 829–836. [Google Scholar] [CrossRef]
- Ostojic, S.M.; Stojanovic, M.; Drid, P.; Hoffman, J.R.; Sekulic, D.; Zenic, N. Supplementation with Guanidinoacetic Acid in Women with Chronic Fatigue Syndrome. Nutrients2016, 8, 72. [Google Scholar] [CrossRef]
- Agren, H.; Niklasson, F. Creatinine and creatine in CSF: Indices of brain energy metabolism in depression. Short note. Neural Transm.1988, 74, 55–59. [Google Scholar] [CrossRef]
- Niklasson, F.; Agren, H. Brain energy metabolism and blood-brain barrier permeability in depressive patients: Analyses of creatine, creatinine, urate, and albumin in CSF and blood. Psychiatry1984, 19, 1183–1206. [Google Scholar] [PubMed]
- Kato, T.; Takahashi, S.; Shioiri, T.; Inubushi, T. Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. Affect. Disord.1992, 26, 223–230. [Google Scholar] [CrossRef]
- Kato, T.; Takahashi, S.; Shioiri, T.; Murashita, J.; Hamakawa, H.; Inubushi, T. Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. Affect. Disord.1994, 31, 125–133. [Google Scholar] [CrossRef]
- Silveri, M.M.; Parow, A.M.; Villafuerte, R.A.; Damico, K.E.; Goren, J.; Stoll, A.L.; Cohen, B.M.; Renshaw, P.F. S-adenosyl-L-methionine: Effects on brain bioenergetic status and transverse relaxation time in healthy subjects. Psychiatry2003, 54, 833–839. [Google Scholar] [CrossRef]
- Kondo, D.G.; Forrest, L.N.; Shi, X.; Sung, Y.H.; Hellem, T.L.; Huber, R.S.; Renshaw, P.F. Creatine target engagement with brain bioenergetics: A dose-ranging phosphorus-31 magnetic resonance spectroscopy study of adolescent females with SSRI-resistant depression. Amino Acids2016, 48, 1941–1954. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yoon, S.; Kim, J.E.; Hwang, J.; Kim, T.S.; Kang, H.J.; Namgung, E.; Ban, S.; Oh, S.; Yang, J.; Renshaw, P.F.; et al. Effects of Creatine Monohydrate Augmentation on Brain Metabolic and Network Outcome Measures in Women With Major Depressive Disorder. Psychiatry2016, 80, 439–447. [Google Scholar] [CrossRef]
- Allen, P.J.; D’Anci, K.E.; Kanarek, R.B.; Renshaw, P.F. Chronic creatine supplementation alters depression-like behavior in rodents in a sex-dependent manner. Neuropsychopharmacology2010, 35, 534–546. [Google Scholar] [CrossRef][Green Version]
- Ahn, N.R.; Leem, Y.H.; Kato, M.; Chang, H.K. Effects of creatine monohydrate supplementation and exercise on depression-like behaviors and raphe 5-HT neurons in mice. Exerc. Nutrition Biochem.2016, 20, 24–31. [Google Scholar] [CrossRef]
- Pazini, F.L.; Cunha, M.P.; Azevedo, D.; Rosa, J.M.; Colla, A.; de Oliveira, J.; Ramos-Hryb, A.B.; Brocardo, P.S.; Gil-Mohapel, J.; Rodrigues, A.L.S. Creatine Prevents Corticosterone-Induced Reduction in Hippocampal Proliferation and Differentiation: Possible Implication for Its Antidepressant Effect. Neurobiol.2017, 54, 6245–6260. [Google Scholar] [CrossRef]
- Leem, Y.H.; Kato, M.; Chang, H. Regular exercise and creatine supplementation prevent chronic mild stress-induced decrease in hippocampal neurogenesis via Wnt/GSK3beta/beta-catenin pathway. Exerc. Nutrition Biochem.2018, 22, 1–6. [Google Scholar] [CrossRef]
- Kious, B.M.; Kondo, D.G.; Renshaw, P.F. Creatine for the Treatment of Depression. Biomolecules2019, 9, 406. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bakian, A.V.; Huber, R.S.; Scholl, L.; Renshaw, P.F.; Kondo, D. Dietary creatine intake and depression risk among U.S. adults. Psychiatry2020, 10, 52. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lyoo, I.K.; Demopulos, C.M.; Hirashima, F.; Ahn, K.H.; Renshaw, P.F. Oral choline decreases brain purine levels in lithium-treated subjects with rapid-cycling bipolar disorder: A double-blind trial using proton and lithium magnetic resonance spectroscopy. Bipolar Disord.2003, 5, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Lyoo, I.K.; Kong, S.W.; Sung, S.M.; Hirashima, F.; Parow, A.; Hennen, J.; Cohen, B.M.; Renshaw, P.F. Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res.2003, 123, 87–100. [Google Scholar] [CrossRef]
- Sbracia, M.; Sayme, N.; Grasso, J.; Vigue, L.; Huszar, G. Sperm function and choice of preparation media: Comparison of Percoll and Accudenz discontinuous density gradients. Androl.1996, 17, 61–67. [Google Scholar]
- Huszar, G.; Vigue, L.; Corrales, M. Sperm creatine kinase activity in fertile and infertile oligospermic men. Androl.1990, 11, 40–46. [Google Scholar]
- Fakih, H.; MacLusky, N.; DeCherney, A.; Wallimann, T.; Huszar, G. Enhancement of human sperm motility and velocity in vitro: Effects of calcium and creatine phosphate. Steril.1986, 46, 938–944. [Google Scholar] [CrossRef]
- Oehninger, S.; Alexander, N.J. Male infertility: The focus shifts to sperm manipulation. Opin. Obstet. Gynecol.1991, 3, 182–190. [Google Scholar] [CrossRef]
- Gergely, A.; Szollosi, J.; Falkai, G.; Resch, B.; Kovacs, L.; Huszar, G. Sperm creatine kinase activity in normospermic and oligozospermic Hungarian men. Assist. Reprod. Genet.1999, 16, 35–40. [Google Scholar] [CrossRef]
- Froman, D.P.; Feltmann, A.J. A new approach to sperm preservation based on bioenergetic theory. Anim. Sci.2010, 88, 1314–1320. [Google Scholar] [CrossRef][Green Version]
- Lenz, H.; Schmidt, M.; Welge, V.; Schlattner, U.; Wallimann, T.; Elsasser, H.P.; Wittern, K.P.; Wenck, H.; Stab, F.; Blatt, T. The creatine kinase system in human skin: Protective effects of creatine against oxidative and UV damage in vitro and in vivo. Investig. Dermatol.2005, 124, 443–452. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Peirano, R.I.; Achterberg, V.; Dusing, H.J.; Akhiani, M.; Koop, U.; Jaspers, S.; Kruger, A.; Schwengler, H.; Hamann, T.; Wenck, H.; et al. Dermal penetration of creatine from a face-care formulation containing creatine, guarana and glycerol is linked to effective antiwrinkle and antisagging efficacy in male subjects. Cosmet. Dermatol.2011, 10, 273–281. [Google Scholar] [CrossRef] [PubMed]
BANT and the NHS: CLARE GRUNDEL
- https://www.kingsfund.org.uk/publications/public-and-nhs-whats-the-deal
- https://www.kingsfund.org.uk/projects/time-think-differently/trends-disease-and-disability-long-term-conditions-multi-morbidity#:~:text=About%2015%20million%20people%20in,pulmonary%20disease%2C%20arthritis%20and%20hypertension.
- https://www.diabetes.org.uk/about_us/news/number-people-living-diabetes-uk-tops-5-million-first-time.
- House of Commons Obesity Statistics January 2023 – https://researchbriefings.files.parliament.uk/documents/SN03336/SN03336.pdf
- https://www.healthexpress.co.uk/obesity-statistics-uk
- https://www.frontier-economics.com/uk/en/news-and-articles/articles/article-i9130-the-annual-social-cost-of-obesity-in-the-uk.
- Effects of a lifestyle intervention on the biomarkers of oxidative stress in non-communicable diseases: A systematic review. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034086/
- The effectiveness of diet intervention in improving the metabolism of overweight and obese women: a systematic review and meta-analysis. https://www.nutrition-evidence.com/article/35702099?term=35702099&limit=expert_opinion:Plain%20Language%20Summary
- Dietary Interventions to Treat Type 2 Diabetes in Adults with a Goal of Remission: An Expert Consensus Statement from the American College of Lifestyle Medicine. https://www.nutrition-evidence.com/article/0e02899c5654fb8b10a50f61b7a22e70.
GUT HEALTH
Acceptability, Tolerability, and Estimates of Putative Treatment Effects of Probiotics as Adjunctive Treatment in Patients With Depression: A Randomized Clinical Trial. JAMA Psychiatry 2023. Published online June 14: https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2806011.
The United Kingdom Soybean Oil Industry Outlook 2022 – 2026: https://www.reportlinker.com/clp/country/2381/726373.
Diet high in linoleic acid dysregulates the intestinal endocannabinoid system and increases susceptibility to colitis in mice. Gut Microbes 2023, 15:1: https://www.tandfonline.com/doi/full/10.1080/19490976.2023.2229945.
PROFIT trial abstract: Faecal microbiota transplant restores gut barrier function and augments ammonia metabolism in patients with advanced cirrhosis: a randomised single-blind placebo-controlled trial: https://www.easlcongress.eu/wp-content/uploads/2023/06/EASL_2023_Congress_Abstracts_version5_20June_compressed.pdf.
Streptococcus Species Abundance in the Gut Is Linked to Subclinical Coronary Atherosclerosis in 8973 Participants From the SCAPIS Cohort. Circulation 2023: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.123.063914.
IN PRACTICE – LISA SMITH
Books
Untypical: How the World Isn’t Built for Autistic People and What We Should All Do About It by Pete Wharmby and HarperCollins.
ADHD 2.0: New Science and Essential Strategies for Thriving with Distraction – from Childhood through Adulthood by Edward M. Hallowell and John J. Ratey. |
Studies
Obesity and associated factors in youth with an autism spectrum disorder Autism. Autism 2016, 20(8), 916-926. https://doi.org/10.1177/1362361315616345.
Overlapping neurobehavioral circuits in ADHD, obesity, and binge eating: Evidence from Neuroimaging Research. CNS Spectr 2015, Aug;20(4):401-11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560968.
Reward Deficiency Syndrome: Attentional/Arousal Subtypes, Limitations of Current Diagnostic Nosology, and Future Research. J Reward Defic Syndr 2015: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545661.
Symptoms of Attention Deficit Hyperactivity Disorder (ADHD) among adult eating disorder patients: https://link.springer.com/content/pdf/10.1186/s12888-016-1093-1.pdf.
Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis. AM J Psychiatry 2015: https://ajp.psychiatryonline.org/doi/full/10.1176/appi.ajp.2015.15020266.
Interoceptive awareness in attention deficit hyperactivity disorder. PLoS One 2018, 13(10), p.e0205221: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205221.
Genetic Epidemiology and Insights into Interactive Genetic and Environmental Effects in Autism Spectrum Disorders. Biological Psychiatry 2014: https://www.biologicalpsychiatryjournal.com/article/S0006-3223(14)00827-0/fulltext.
RESEARCH update
Associations Between Objective and Subjective Experiences of Childhood Maltreatment and the Course of Emotional Disorders in Adulthood JAMA Psychiatry 2023, Online First July 5: https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2806882.
Fusobacterium infection facilitates the development of endometriosis through the phenotypic transition of endometrial fibroblasts. Science Translational Medicine, 2023; 15 (700) DOI: 10.1126/scitranslmed.add1531.
Probiotics modify human intestinal mucosa-associated microbiota in patients with colorectal cancer. Molecular Medicine Reports 2015, 6119-6127. https://doi.org/10.3892/mmr.2015.4124.
“Thousands of people admitted to hospital with malnutrition”, by Georgia Lambert, The Times, July 10, 2023: https://www.thetimes.co.uk/article/times-health-commission-thousands-of-people-admitted-to-hospital-suffering-from-malnutrition-n23hqgzjr.
Mfsd2a mediated lysolipid transport is important for renal recovery after acute kidney injury. Journal of Lipid Research 2023; 100416. DOI: 10.1016/j.jlr.2023.100416.
Blood-derived lysophospholipid sustains hepatic phospholipids and fat storage necessary for hepatoprotection in overnutrition, The Journal of Clinical Investigation 2023: https://www.jci.org/articles/view/171267.
Muscle-building supplement β-hydroxy β-methylbutyrate binds to PPARα to improve hippocampal functions in mice. Cell Reports 2023, 112717. DOI: 10.1016/j.celrep.2023.112717.
Dietary leucine requirement of older men and women is higher than current recommendations. Am J Clin Nutr 2021, Feb 2;113(2):410-419: https://pubmed.ncbi.nlm.nih.gov/33330915.
Brain amino acid requirements and toxicity: the example of leucine. J Nutr 2005, Jun;135(6 Suppl):1531S-8S. https://pubmed.ncbi.nlm.nih.gov/15930465.
Inhibition of Toxic Shock Syndrome-Associated Staphylococcus aureus by Probiotic Lactobacilli. Microbiology Spectrum 2023; DOI: 10.1128/spectrum.01735-23.
July 2023
WELCOME
Review: Taurine: A “very essential” amino acid. Mol Vis 2012, 18: 2673–2686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501277.
Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb Haemost. 2015;113(5):1135-44. https://pubmed.ncbi.nlm.nih.gov/25694037.
NEWS
Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat Metab 2023, June 12: https://www.nature.com/articles/s42255-023-00816-9.
Taurine deficiency as a driver of aging. Science 2023, 380, eabn9257: https://www.science.org/doi/10.1126/science.abn9257.
Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan. Nat Microbiol 2023, 8, 1064–1078. https://doi.org/10.1038/s41564-023-01370-6.
Accelerometer-measured intensity-specific physical activity, genetic risk and incident type 2 diabetes: a prospective cohort study. British Journal of Sports Medicine 2023, bjsports-2022-106653. DOI: 10.1136/bjsports-2022-106653.
Alzheimer’s
1. Midlife lipid and glucose levels are associated with Alzheimer’s disease. Alzheimers Dement 2023 Jan;19(1):181-193. doi: 10.1002/alz.12641. Epub 2022 Mar 23. PMID: 35319157; PMCID: PMC10078665.
2. ‘Glucose levels and risk of dementia’, New England Journal of Medicine (2013), vol 369(6):540–548.
3.Smith AD, Refsum H, Bottiglieri T, Fenech M, Hooshmand B, McCaddon A, Miller JW, Rosenberg IH, Obeid R. Homocysteine and Dementia: An International Consensus Statement. J Alzheimers Dis. 2018;62(2):561-570. doi: 10.3233/JAD-171042. PMID: 29480200; PMCID: PMC5836397.
- Zylberstein DE, Lissner L, Bjorkelund C, Mehlig K, Thelle DS, Gustafson D, Ostling S, Waern M, Guo X, Skoog I (2011) Midlife homocysteine and late-life dementia in women. A prospective population study. Neurobiol Aging 32, 380-386
- Nurk E, Refsum H, Tell GS, Engedal K, Vollset SE, Ueland PM, Nygaard HA, Smith AD (2005) Plasma total homocysteine and memory in the elderly: The Hordaland Homocysteine study. Ann Neurol 58, 847-857.
- Pfeiffer CM, Osterloh JD, Kennedy-Stephenson J, Picciano MF, Yetley EA, Rader JI, Johnson CL. Trends in circulating concentrations of total homocysteine among US adolescents and adults: findings from the 1991-1994 and 1999-2004 National Health and Nutrition Examination Surveys. Clin Chem. 2008 May;54(5):801-13. doi: 10.1373/clinchem.2007.100214. Epub 2008 Mar 28. PMID: 18375482.
- Ravaglia G, Forti P, Maioli F, Martelli M, Servadei L, Brunetti N, Porcellini E, Licastro F (2005) Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am J Clin Nutr 82, 636-643.
- Wei BZ, Li L, Dong CW, Tan CC; Alzheimer’s Disease Neuroimaging Initiative; Xu W. The Relationship of Omega-3 Fatty Acids with Dementia and Cognitive Decline: Evidence from Perspective Cohort Studies of Supplementation, Dietary Intake, and Blood Markers. Am J Clin Nutr. 2023 Apr 5:S0002-9165(23)46320-4. doi: 10.1016/j.ajcnut.2023.04.001. Epub ahead of print. PMID: 37028557.
- Huang Y, Deng Y, Zhang P, Lin J, Guo D, Yang L, Liu D, Xu B, Huang C and Zhang H (2022) Associations of fish oil supplementation with incident dementia: Evidence from the UK Biobank cohort study. Front. Neurosci. 16:910977.doi: 10.3389/fnins.2022.910977
- Jernerén F, Elshorbagy AK, Oulhaj A, Smith SM, Refsum H, Smith AD. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr. 2015 Jul;102(1):215-21. doi: 10.3945/ajcn.114.103283. Epub 2015 Apr 15. PMID: 25877495.
- https://foodforthebrain.org/the-role-of-vitamin-d-in-reducing-risk-of-alzheimers-diseasewilliam-b-grant-ph-d/
- Chai et al. BMC Neurology (2019) 19:284 https://doi.org/10.1186/s12883-019-1500-6
- Calame W, Street L, Hulshof T. Vitamin D Serum Levels in the UK Population, including a Mathematical Approach to Evaluate the Impact of Vitamin D Fortified Ready-to-Eat Breakfast Cereals: Application of the NDNS Database. Nutrients. 2020 Jun 23;12(6):1868. doi: 10.3390/nu12061868. PMID: 32585847; PMCID: PMC7353432.
- Liu X, Baylin A, Levy PD. Vitamin D deficiency and insufficiency among US adults: prevalence, predictors and clinical implications. Br J Nutr. 2018 Apr;119(8):928-936. doi: 10.1017/S0007114518000491. PMID: 29644951.
https://foodforthebrain.org/what-is-the-scientific-basis-of-the-cft-dri-cog-nition/
News 12 and 14
Dietary flavanols restore hippocampal-dependent memory in older adults with lower diet quality and lower habitual flavanol consumption. Proceedings of the National Academy of Sciences 2023, 120 (23): https://www.pnas.org/doi/10.1073/pnas.2216932120.
The enteric nervous system relays psychological stress to intestinal inflammation. Cell 2023: https://pubmed.ncbi.nlm.nih.gov/37236193.
LEARNING ZONE
Methylation – DENISE FURNESS
- de la Calle-Fabregat C, Morante-Palacios O, Ballestar E. Understanding the relevance of DNA methylation changes in immune differentiation and disease. Vol. 11, Genes. 2020.
- Craig PJ. Metal Cycles and Biological Methylation. In: The Natural Environment and the Biogeochemical Cycles. Berlin, Heidelberg: Springer Berlin Heidelberg; 1980. p. 169–227.
- Samavat H, Kurzer MS. Estrogen metabolism and breast cancer. Vol. 356, Cancer Letters. Elsevier Ireland Ltd; 2015. p. 231–43.
- Obeid R. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Vol. 5, Nutrients. 2013. p. 3481–95.
- Razin A, Cedar H. DNA Methylation and Gene Expression. Vol. 55, MICROBIOLOGICAL REVIEWS. 1991.
- Moarii M, Boeva V, Vert JP, Reyal F. Changes in correlation between promoter methylation and gene expression in cancer. BMC Genomics. 2015 Oct 28;16(1).
- Barros SP, Offenbacher S. Epigenetics: Connecting environment and genotype to phenotype and disease. Vol. 88, Journal of Dental Research. 2009. p. 400–8.
- Robertson KD, Wolffe AP. DNA methylation in health and disease. Nature Reviews Genetics [Internet]. 2000;1(1):11–9.
- Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Vol. 20, Nature Reviews Molecular Cell Biology. Nature Publishing Group; 2019. p. 590–607.
- Lewin AH, Silinski P, Hayes J, Gilbert A, Mascarella SW, Seltzman HH. Synthesis and physicochemical characterization of the one-carbon carrier 10-formyltetrahydrofolate; a reference standard for metabolomics. Metabolomics. 2017 Oct 1;13(10).
- Forges T, Monnier-Barbarino P, Alberto JM, Guéant-Rodriguez RM, Daval JL, Guéant JL. Impact of folate and homocysteine metabolism on human reproductive health. Vol. 13, Human Reproduction Update. 2007. p. 225–38.
- Revuelta JL, Serrano-Amatriain C, Ledesma-Amaro R, Jiménez A. Formation of folates by microorganisms: towards the biotechnological production of this vitamin. Applied microbiology and biotechnology. 2018 Oct;102(20):8613–20.
- Scaglione F, Panzavolta G. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica. 2014 May 1;44(5):480–8.
- Visentin M, Diop-Bove N, Zhao R, Goldman ID. The intestinal absorption of folates. Vol. 76, Annual Review of Physiology. 2014. p. 251–74.
- Brunaud L, Alberto J-M, Ayav A, Gérard P, Namour F, Antunes L, et al. Vitamin B12 is a Strong Determinant of Low Methionine Synthase Activity and DNA Hypomethylation in Gastrectomized Rats. Digestion. 2003;68(2–3):133–40.
- Scott J, Weir D. The methyl folate trap. The Lancet. 1981;318(8242):337–40.
- Shane B. Folate and Vitamin B12 Function. In: Lennarz WJ, Lane MD, editors. Encyclopedia of Biological Chemistry (Second Edition). Waltham: Academic Press; 2013. p. 324–8.
- Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, et al. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proceedings of the National Academy of Sciences of the United States of America. 2017 Jan 10;114(2):364–9.
- Watanabe F. Vitamin B12 sources and bioavailability. Exp Biol Med (Maywood). 2007;10(232):1266–74.
- Jain S. Vitamin B6 (pyridoxamine) supplementation and complications of diabetes. Metabolism. 2007;(56(2)):168–71.
- Wu XY, Lu L. Vitamin B6 deficiency, Genome instability and cancer. Vol. 13, Asian Pacific Journal of Cancer Prevention. Asian Pacific Organization for Cancer Prevention; 2012. p. 5333–8.
- Harvard. Vitamin B6 [Internet]. Available from: https://www.hsph.harvard.edu/nutritionsource/vitamin-b6/
- McAuley E, McNulty H, Hughes C, Strain JJ, Ward M. Riboflavin status, MTHFR genotype and blood pressure: Current evidence and implications for personalised nutrition. In: Proceedings of the Nutrition Society. Cambridge University Press; 2016. p. 405–14.
- Peechakara B, Gupta M. Vitamin B2 (Riboflavin). Updated 2020 Jun 25. Treasure Island (FL): StatPearls Publishing; 2020.
- Evans JC, Huddler DP, Jiracek J, Castro C, Millian NS, Garrow TA, et al. Betaine-Homocysteine Methyltransferase: Zinc in a Distorted Barrel decade, elevated homocysteine has been widely recognized as an important independent risk factor for development of cardiovascular disease. Vol. 10, 1159.
- Nordgren KKS, Peng Y, Pelleymounter LL, Moon I, Abo R, Feng Q, et al. Methionine adenosyltransferase 2A/2B and methylation: Gene sequence variation and functional genomics. Drug Metabolism and Disposition. 2011 Nov;39(11):2135–47.
- Murray B, Antonyuk S v., Marina A, Lu SC, Mato JM, Samar Hasnain S, et al. Crystallography captures catalytic steps in human methionine adenosyltransferase enzymes. Proceedings of the National Academy of Sciences of the United States of America. 2016 Feb 23;113(8):2104–9.
- Zeisel SH. A brief history of choline. Vol. 61, Annals of Nutrition and Metabolism. 2012. p. 254–8.
- Vance DE. Phospholipid methylation in mammals: From biochemistry to physiological function. Vol. 1838, Biochimica et Biophysica Acta – Biomembranes. Elsevier B.V.; 2014. p. 1477–87.
- Ganz AB, Klatt KC, Caudill MA. Common genetic variants alter metabolism and influence dietary choline requirements. Vol. 9, Nutrients; 2017.
- Furness DLF, Fenech MF, Khong YT, Romero R, Dekker GA. One-carbon metabolism enzyme polymorphisms and uteroplacental insufficiency. American Journal of Obstetrics and Gynecology. 2008;199(3):276.e1-276.e8.
- Esse R, Barroso M, Almeida IT de, Castro R. The contribution of homocysteine metabolism disruption to endothelial dysfunction: State-of-the-art. Vol. 20, International Journal of Molecular Sciences. 2019.
- Boushey CJ, Beresford SAA, Omenn GS, Motulsky AG. A Quantitative Assessment of Plasma Homocysteine as a Risk Factor for Vascular Disease: Probable Benefits of Increasing Folic Acid Intakes. JAMA [Internet]. 1995 Oct 4;274(13):1049–57.
- Forges T, Monnier-Barbarino P, Alberto JM, Guéant-Rodriguez RM, Daval JL, Guéant JL. Impact of folate and homocysteine metabolism on human reproductive health. Vol. 13, Human Reproduction Update. 2007. p. 225–38.
- Furness D, Fenech M, Dekker G, Khong TY, Roberts C, Hague W. Folate, Vitamin B12, Vitamin B6 and homocysteine: Impact on pregnancy outcome. Maternal and Child Nutrition. 2013;9(2).
- Weiss N. Mechanisms of Increased Vascular Oxidant Stress in Hyperhomocysteinemia and Its Impact on Endothelial Function. Current Drug Metabolism. 2005 Mar 18;6(1):27–36.
- Tsang BL, Devine OJ, Cordero AM, Marchetta CM, Mulinare J, Mersereau P, et al. Assessing the association between the methylenetetrahydrofolate reductase (MTHFR) 677>T polymorphism and blood folate concentrations: A systematic review and meta-analysis of trials and observational studies. American Journal of Clinical Nutrition. 2015 Jun 1;101(6):1286–94.
- Colson NJ, Naug HL, Nikbakht E, Zhang P, McCormack J. The impact of MTHFR 677 C/T genotypes on folate status markers: a meta-analysis of folic acid intervention studies. European Journal of Nutrition. 2017;56(1):247–60.
- McNulty H, Dowey LRC, Strain JJ, Dunne A, Ward M, Molloy AM, et al. Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677C→T polymorphism. Circulation. 2006 Jan;113(1):74–80.
- Shane B, Pangilinan F, Mills JL, Fan R, Gong T, Cropp CD, et al. The 677C→T variant of MTHFR is the major genetic modifier of biomarkers of folate status in a young, healthy Irish population. The American Journal of Clinical Nutrition. 2018 Dec 1;108(6):1334–41.
- Kos BJP, Leemaqz SY, McCormack CD, Andraweera PH, Furness DL, Roberts CT, et al. The association of parental methylenetetrahydrofolate reductase polymorphisms (MTHFR 677 and 1298) and fetal loss: a case–control study in South Australia. Journal of Maternal-Fetal and Neonatal Medicine. 2020;33(5).
- Weisberg IS, Jacques PF, Selhub J, Bostom AG, Chen Z, Curtis Ellison R, et al. The 1298 A–C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis. 2001 Jun;156(2):409—415.
- Kohlmeier M, da Costa K-A, Fischer LM, Zeisel SH. Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16025-302005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1276051.
- Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, et al. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proceedings of the National Academy of Sciences of the United States of America. 1998 Mar 17;95(6):3059–64.
- Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, et al. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Molecular genetics and metabolism. 1999 Aug;67(4):317—323.
- Gaughan DJ, Kluijtmans LA, Barbaux S, McMaster D, Young IS, Yarnell JW, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001 Aug;157(2):451—456.
JOINTS and BONES
The prevalence of osteoporosis in postmenopausal women in urban Tianjin, China and its related factors. Menopause 2023, Jun 6, https://pubmed.ncbi.nlm.nih.gov/37279508.
Cardiovascular Disease Risk Factors Predict the Development and Numbers of Common Musculoskeletal Disorders in a Prospective Cohort. Journal of Occupational and Environmental Medicine 2003, June 2: https://journals.lww.com/joem/Abstract/9900/Cardiovascular_Disease_Risk_Factors_Predict_the.331.aspx.
Citrates
1. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients 2013 Jul 31;5(8):3022-33.
2. Impact of magnesium: calcium ratio on calcification of the aortic wall. PLoS ONE 2017 12(6): e0178872.
3. Potassium citrate prevents increased osteoclastogenesis resulting from acidic conditions: Implication for the treatment of postmenopausal bone loss. PloS ONE 2017, 12(7): https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181230. 4. Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 2010, 338:241-254. https://pubmed.ncbi.nlm.nih.gov/20035439.
The missing link
The Roles of Vitamins D and K in Bone Health and Osteoporosis Prevention. Proc Nutr Soc 1997;56:915-937: https://pubmed.ncbi.nlm.nih.gov/9483660.
The Combination Effect of Vitamin K and Vitamin D on Human Bone Quality: A Meta-Analysis of Randomized Controlled Trials. Food Funct 2020, 11:3280-3297. https://pubmed.ncbi.nlm.nih.gov/32219282.
IN PRACTICE – long COVID
Hypothesis: inflammatory acid-base disruption underpins Long Covid. Front Immunol 2023; 14: 1150105. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140510.
Maintained imbalance of triglycerides, apolipoproteins, energy metabolites and cytokines in long-term COVID-19 syndrome patients. Front. Immunol 2023, 09 May, Sec. Viral Immunology, 14: https://www.frontiersin.org/articles/10.3389/fimmu.2023.1144224/full.
Potential Renal Acid Load of Foods and its Influence on Urine pH. J Am Diet Assoc 1995 Jul;95(7):791-7. https://inaturally.com.au/wp-content/uploads/2020/04/The-PRAL-Table.pdf.
Effects of 12-Week Low or Moderate Dietary Acid Intake on Acid-Base Status and Kidney Function at Rest and during Submaximal Cycling. Nutrients 2018, Mar 8;10(3):323. https://www.mdpi.com/2072-6643/10/3/323.
RESEARCH UPDATE
Integrative genetic analysis identifies FLVCR1 as a plasma membrane choline transporter in mammals. Cell Metabolism 2023, Jun 6;35(6):1057-1071.e12. https://www.cell.com/cell-metabolism/fulltext/S1550-4131(23)00130-4.
A Dietary Strategy for Optimizing the Visual Range of Athletes. Exercise and Sport Sciences Reviews 2023, https://journals.lww.com/acsm-essr/Fulltext/2023/07000/A_Dietary_Strategy_for_Optimizing_the_Visual_Range.4.aspx.
Association of distinct microbial signatures with premalignant colorectal adenomas. Cell Host & Microbe 2023; 31 (5): 827 DOI: 10.1016/j.chom.2023.04.007.
Association of distinct microbial signatures with premalignant colorectal adenomas. Cell Host & Microbe 2023; 31 (5): 827. https://pubmed.ncbi.nlm.nih.gov/37130517.
Fatty fish consumption reduces lipophilic index in erythrocyte membranes and serum phospholipids. Nutr Metab Cardiovasc Dis 2023, Online ahead of print Apr 17;S0939-4753(23)00158-8: https://pubmed.ncbi.nlm.nih.gov/37156666.
Persistent serum protein signatures define an inflammatory subcategory of long COVID. Nature Communications 2023, June 9, 14, 3417: https://www.nature.com/articles/s41467-023-38682-4.
June 2023
WELCOME
“WeightWatchers to Acquire Sequence, a Digital Health Platform for Clinical Weight Management”: https://corporate.ww.com/news-room/press-releases/news-details/2023/WeightWatchers-to-Acquire-Sequence-a-Digital-Health-Platform-for-Clinical-Weight-Management/default.aspx.
Mayo Clinic study (senior author Dr Andres Acosta, Precision Medicine for Obesity Program at the Mayo Clinic): poster presentation PO4.099 at the European Congress on Obesity (ECO) May 10-13. The material has been peer-reviewed by the congress selection committee. No paper published yet.
Selection of Antiobesity Medications Based on Phenotypes Enhances Weight Loss: A Pragmatic Trial in an Obesity Clinic. Obesity (Silver Spring) 2021 Apr; 29(4): 662–671. Published online Mar 23: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168710.
Integrating Nutrient Biomarkers, Cognitive Function, and Structural MRI Data to Build Multivariate Phenotypes of Healthy Aging. The Journal of Nutrition 2023, May;153(5):1338-1346. https://pubmed.ncbi.nlm.nih.gov/36965693
NEWS
Efficacy of vitamin D3 supplementation on cancer mortality: Systematic review and individual patient data meta-analysis of randomised controlled trials. Ageing Res Rev 2023, June; 87:101923. https://pubmed.ncbi.nlm.nih.gov/37004841.
Mitochondria: it is all about energy. Front Physiol 2023,
Sec. Mitochondrial Research, 14: https://doi.org/10.3389/fphys.2023.1114231.
KATP channels are necessary for glucose-dependent increases in amyloid-β and Alzheimer’s disease-related pathology. JCI Insight 2023, May 2;8(10):e162454. https://pubmed.ncbi.nlm.nih.gov/37129980.
Excess dietary sugar alters colonocyte metabolism and impairs the proliferative response to damage. Cellular and Molecular Gastroenterology and Hepatology 2023, May 4, pre-publication proof: https://www.cmghjournal.org/article/S2352-345X(23)00063-2/pdf.
Daily folate consumption is associated with reduced all-cause and cardiovascular disease mortality among US adults with diabetes, prediabetes, or insulin resistance. Nutr Res 2023, Apr 26;114:71-80. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/37209506.
Desulfovibrio bacteria enhance alpha-synuclein aggregation in a Caenorhabditis elegans model of Parkinson’s disease
Front. Cell. Infect. Microbiol 2023, May 1, Sec. Molecular Bacterial Pathogenesis, 13: https://doi.org/10.3389/fcimb.2023.1181315.
Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response.
Nat Commun 2023 Mar 30;14(1):1772. https://pubmed.ncbi.nlm.nih.gov/36997530.
Deficiency in the omega-3 lysolipid transporter Mfsd2a leads to aberrant oligodendrocyte lineage development and hypomyelination. Journal of Clinical Investigation 2023, DOI: 10.1172/JCI164118.
RESEARCH
Higher Intake Of Dietary Flavonols, Specifically Dietary Quercetin, Is Associated With Lower Odds Of Frailty Onset Over 12-Years Of Follow-Up Among Adults In The Framingham Heart Study. American Journal of Clinical Nutrition 2023, Apr 13, In Press, corrected proof: https://www.sciencedirect.com/science/article/abs/pii/S0002916523468426?via%3Dihub.
Low 25(OH) vitamin D levels are associated with Long COVID syndrome in COVID-19 survivors was a poster presentation given on May 13 at the European Congress of Endocrinology at the Halic Congress Centre in Istanbul. The study has also been published in the Journal of Clinical Endocrinology 2023, online ahead of print at https://pubmed.ncbi.nlm.nih.gov/37051747.
Heart failure
The Greater Glasgow & Clyde Population Study was presented during the session ‘Late breaking clinical trials: epidemiology and registries’.
The struggle towards a Universal Definition of Heart Failure-how to proceed? Eur Heart J. 2021;42:2331–2343.
2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–3726.
Prevalence of markers of heart failure in patients with atrial fibrillation and the effects of ximelagatran compared to warfarin on the incidence of morbid and fatal events: a report from the SPORTIF III and V trials. Eur J Heart Fail. 2007;9:730–739.
Use of diuretics and outcomes in patients with type 2 diabetes: findings from the EMPA-REG OUTCOME trial. Eur J Heart Fail. 2021;23:1085–1093.
Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet. 2018;391:572–580.
Nitrate: The Dr. Jekyll and Mr. Hyde of human health? Trends in Food Science & Technology 2023, 135: 57, doi: 10.1016/j.tifs.2023.03.014.
Ultra-Processed Foods and Drinks Consumption Is Associated with Psychosocial Functioning in Adolescents. Nutrients. 2022 Nov 15;14(22):4831. https://doi.org/10.3390/nu14224831.
Food-Grade Metal Oxide Nanoparticles Exposure Alters Intestinal Microbial Populations, Brush Border Membrane Functionality and Morphology, In Vivo (Gallus gallus). Antioxidants 2023, 12(2), 431: https://doi.org/10.3390/antiox12020431.
SIBO
- Robles-Alonso V., Guarner F. Progress in the knowledge of the instestinal human mucrobiota. Nutricion Hospitalaria. 2013:553–557. doi: 10.3305/nh.2013.28.3.6601. [PubMed] [CrossRef] [Google Scholar]
- Jethwani P., Grover K. Gut Microbiota in Health and Diseases—A Review. Int. J. Curr. Microbiol. App. Sci. 2019;8:1586–1599. doi: 10.20546/ijcmas.2019.808.187. [CrossRef] [Google Scholar]
- Gomaa E.Z. Human Gut Microbiota/Microbiome in Health and Diseases: A Review. Antonie Van Leeuwenhoek. 2020;113:2019–2040. doi: 10.1007/s10482-020-01474-7. [PubMed] [CrossRef] [Google Scholar]
- Corazza G.R., Menozzi M.G., Strocchi A., Rasciti L., Vaira D., Lecchini R., Avanzini P., Chezzi C., Gasbarrini G. The Diagnosis of Small Bowel Bacterial Overgrowth. Gastroenterology. 1990;98:302–309. doi: 10.1016/0016-5085(90)90818-L. [PubMed] [CrossRef] [Google Scholar]
- Adike A., DiBaise J.K. Small Intestinal Bacterial Overgrowth. Gastroenterol. Clin. N. Am. 2018;47:193–208. doi: 10.1016/j.gtc.2017.09.008. [PubMed] [CrossRef] [Google Scholar]
- Enko D., Kriegshäuser G. Functional 13C-Urea and Glucose Hydrogen/Methane Breath Tests Reveal Significant Association of Small Intestinal Bacterial Overgrowth in Individuals with Active Helicobacter PyloriInfection. Clin. Biochem. 2017;50:46–49. doi: 10.1016/j.clinbiochem.2016.08.017. [PubMed] [CrossRef] [Google Scholar]
- Pimentel M., Chow E.J., Lin H.C. Normalization of Lactulose Breath Testing Correlates with Symptom Improvement in Irritable Bowel Syndrome: A Double-Blind, Randomized, Placebo-Controlled Study. Am. J. Gastroenterol. 2003;98:412–419. doi: 10.1111/j.1572-0241.2003.07234.x. [PubMed] [CrossRef] [Google Scholar]
- Pimentel M. A Link between Irritable Bowel Syndrome and Fibromyalgia May Be Related to Findings on Lactulose Breath Testing. Ann. Rheum. Dis. 2004;63:450–452. doi: 10.1136/ard.2003.011502. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Walters B., Vanner S.J. Detection of Bacterial Overgrowth in IBS Using the Lactulose H2 Breath Test: Comparison with 14C-d-Xylose and Healthy Controls. Am. J. Gastroenterol. 2005;100:1566–1570. doi: 10.1111/j.1572-0241.2005.40795.x. [PubMed] [CrossRef] [Google Scholar]
- Lupascu A., Gabrielli M., Lauritano E.C., Scarpellini E., Santoliquido A., Cammarota G., Flore R., Tondi P., Pola P., Gasbarrini G., et al. Hydrogen Glucose Breath Test to Detect Small Intestinal Bacterial Overgrowth: A Prevalence Case-Control Study in Irritable Bowel Syndrome. Aliment. Pharm. 2005;22:1157–1160. doi: 10.1111/j.1365-2036.2005.02690.x. [PubMed] [CrossRef] [Google Scholar]
- Posserud I., Stotzer P.-O., Björnsson E.S., Abrahamsson H., Simrén M. Small Intestinal Bacterial Overgrowth in Patients with Irritable Bowel Syndrome. Gut. 2007;56:802–808. doi: 10.1136/gut.2006.108712. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Bratten J.R., Spanier J., Jones M.P. Lactulose Breath Testing Does Not Discriminate Patients with Irritable Bowel Syndrome from Healthy Controls. Am. J. Gastroenterol. 2008;103:958–963. doi: 10.1111/j.1572-0241.2008.01785.x. [PubMed] [CrossRef] [Google Scholar]
- Park J.H., Park D.I., Kim H.J., Cho Y.K., Sohn C.I., Jeon W.K., Kim B.I., Won K.H., Park S.M. The Relationship between Small-Intestinal Bacterial Overgrowth and Intestinal Permeability in Patients with Irritable Bowel Syndrome. Gut Liver. 2009;3:174–179. doi: 10.5009/gnl.2009.3.3.174. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Parodi A., Dulbecco P., Savarino E., Giannini E.G., Bodini G., Corbo M., Isola L., De Conca S., Marabotto E., Savarino V. Positive Glucose Breath Testing Is More Prevalent in Patients with IBS-like Symptoms Compared with Controls of Similar Age and Gender Distribution. J. Clin. Gastroenterol. 2009;43:962–966. doi: 10.1097/MCG.0b013e3181a099a5. [PubMed] [CrossRef] [Google Scholar]
- Ghoshal U.C., Kumar S., Mehrotra M., Lakshmi C., Misra A. Frequency of Small Intestinal Bacterial Overgrowth in Patients with Irritable Bowel Syndrome and Chronic Non-Specific Diarrhea. J. Neurogastroenterol. Motil. 2010;16:40–46. doi: 10.5056/jnm.2010.16.1.40. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Rana S.V., Sharma S., Kaur J., Sinha S.K., Singh K. Comparison of Lactulose and Glucose Breath Test for Diagnosis of Small Intestinal Bacterial Overgrowth in Patients with Irritable Bowel Syndrome. Digestion. 2012;85:243–247. doi: 10.1159/000336174. [PubMed] [CrossRef] [Google Scholar]
- Sachdeva S., Rawat A.K., Reddy R.S., Puri A.S. Small Intestinal Bacterial Overgrowth (SIBO) in Irritable Bowel Syndrome: Frequency and Predictors: SIBO in IBS: Frequency and Predictors. J. Gastroenterol. Hepatol. 2011;26:135–138. doi: 10.1111/j.1440-1746.2011.06654.x. [PubMed] [CrossRef] [Google Scholar]
- Ghoshal U.C., Srivastava D., Ghoshal U., Misra A. Breath Tests in the Diagnosis of Small Intestinal Bacterial Overgrowth in Patients with Irritable Bowel Syndrome in Comparison with Quantitative Upper Gut Aspirate Culture. Eur. J. Gastroenterol. Hepatol. 2014;26:753–760. doi: 10.1097/MEG.0000000000000122. [PubMed] [CrossRef] [Google Scholar]
- Abbasi M.H., Zahedi M., Darvish Moghadam S., Shafieipour S., HayatBakhsh Abbasi M. Small Bowel Bacterial Overgrowth in Patients with Irritable Bowel Syndrome: The First Study in Iran. Middle East J. Dig. Dis. 2015;7:36–40. [PMC free article] [PubMed] [Google Scholar]
- Zhao J., Zheng X., Chu H., Zhao J., Cong Y., Fried M., Fox M., Dai N. A Study of the Methodological and Clinical Validity of the Combined Lactulose Hydrogen Breath Test with Scintigraphic Oro-Cecal Transit Test for Diagnosing Small Intestinal Bacterial Overgrowth in IBS Patients. Neurogastroenterol. Motil. 2014;26:794–802. doi: 10.1111/nmo.12331. [PubMed] [CrossRef] [Google Scholar]
- Rutgeerts P., Ghoos Y., Vantrappen G., Eyssen H. IIeal Dysfunction and Bacterial Overgrowth in Patients with Crohn’s Disease. Eur. J. Clin. Investig. 1981;11:199–206. doi: 10.1111/j.1365-2362.1981.tb01841.x. [PubMed] [CrossRef] [Google Scholar]
- Castiglione F., Del Vecchio Blanco G., Rispo A., Petrelli G., Amalfi G., Cozzolino A., Cuccaro I., Mazzacca G. Orocecal Transit Time and Bacterial Overgrowth in Patients with Crohn’s Disease. J. Clin. Gastroenterol. 2000;31:63–66. doi: 10.1097/00004836-200007000-00015. [PubMed] [CrossRef] [Google Scholar]
- Klaus J., Spaniol U., Adler G., Mason R.A., Reinshagen M., von Tirpitz C.C. Small Intestinal Bacterial Overgrowth Mimicking Acute Flare as a Pitfall in Patients with Crohn’s Disease. BMC Gastroenterol. 2009;9:61. doi: 10.1186/1471-230X-9-61. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Greco A., Caviglia G.P., Brignolo P., Ribaldone D.G., Reggiani S., Sguazzini C., Smedile A., Pellicano R., Resegotti A., Astegiano M., et al. Glucose Breath Test and Crohn’s Disease: Diagnosis of Small Intestinal Bacterial Overgrowth and Evaluation of Therapeutic Response. Scand. J. Gastroenterol. 2015;50:1376–1381. doi: 10.3109/00365521.2015.1050691. [PubMed] [CrossRef] [Google Scholar]
- Ricci J.E.R., Chebli L.A., Ribeiro T.C.d.R., Castro A.C.S., Gaburri P.D., Pace F.H.d.L., Barbosa K.V.B.D., Ferreira L.E.V.V.d.C., Passos M.d.C.F., Malaguti C., et al. Small-Intestinal Bacterial Overgrowth Is Associated with Concurrent Intestinal Inflammation but Not with Systemic Inflammation in Crohn’s Disease Patients. J. Clin. Gastroenterol. 2018;52:530–536. doi: 10.1097/MCG.0000000000000803. [PubMed] [CrossRef] [Google Scholar]
- Rana S.V., Sharma S., Kaur J., Prasad K.K., Sinha S.K., Kochhar R., Malik A., Morya R.K. Relationship of Cytokines, Oxidative Stress and GI Motility with Bacterial Overgrowth in Ulcerative Colitis Patients. J. Crohn’s Colitis. 2014;8:859–865. doi: 10.1016/j.crohns.2014.01.007. [PubMed] [CrossRef] [Google Scholar]
- Yang C., Zhang X., Wang S., Huo X., Wang J. Small Intestinal Bacterial Overgrowth and Evaluation of Intestinal Barrier Function in Patients with Ulcerative Colitis. Am. J. Transl. Res. 2021;13:6605–6610. [PMC free article] [PubMed] [Google Scholar]
- Rana S.V., Sharma S., Malik A., Kaur J., Prasad K.K., Sinha S.K., Singh K. Small Intestinal Bacterial Overgrowth and Orocecal Transit Time in Patients of Inflammatory Bowel Disease. Dig. Dis. Sci. 2013;58:2594–2598. doi: 10.1007/s10620-013-2694-x. [PubMed] [CrossRef] [Google Scholar]
- Lee J.M., Lee K.-M., Chung Y.Y., Lee Y.W., Kim D.B., Sung H.J., Chung W.C., Paik C.-N. Clinical Significance of the Glucose Breath Test in Patients with Inflammatory Bowel Disease. J. Gastroenterol. Hepatol. 2015;30:990–994. doi: 10.1111/jgh.12908. [PubMed] [CrossRef] [Google Scholar]
- Andrei M., Gologan Ş. Small Intestinal Bacterial Overgrowth Syndrome Prevalence in Romanian Patients with Inflammatory Bowel Disease. Curr. Health Sci. J. 2016:151–156. doi: 10.12865/CHSJ.42.02.06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Ghoshal U.C., Yadav A., Fatima B., Agrahari A.P., Misra A. Small Intestinal Bacterial Overgrowth in Patients with Inflammatory Bowel Disease: A Case-Control Study. Indian, J. Gastroenterol. 2022;41:96–103. doi: 10.1007/s12664-021-01211-6. [PubMed] [CrossRef] [Google Scholar]
- Prizont R., Hersh T., Floch M.H. Jejunal Bacterial Flora in Chronic Small Bowel Disease. Am. J. Clin. Nutr. 1970;23:1602–1607. doi: 10.1093/ajcn/23.12.1602. [PubMed] [CrossRef] [Google Scholar]
- Tursi A., Brandimarte G., Giorgetti G. High Prevalence of Small Intestinal Bacterial Overgrowth in Celiac Patients with Persistence of Gastrointestinal Symptoms after Gluten Withdrawal. Am. J. Gastroenterol. 2003;98:839–843. doi: 10.1111/j.1572-0241.2003.07379.x. [PubMed] [CrossRef] [Google Scholar]
- Ghoshal U.C., Ghoshal U., Misra A., Choudhuri G. Partially Responsive Celiac Disease Resulting from Small Intestinal Bacterial Overgrowth and Lactose Intolerance. BMC Gastroenterol. 2004;4:10. doi: 10.1186/1471-230X-4-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Rana S.V., Sinha S.K., Lal S., Sikander A., Singh K. Small Intestinal Bacterial Overgrowth in North Indian Patients with Celiac Disease. Trop. Gastroenterol. 2007;28:159–161. [PubMed] [Google Scholar]
- Rubio-Tapia A., Barton S.H., Rosenblatt J.E., Murray J.A. Prevalence of Small Intestine Bacterial Overgrowth Diagnosed by Quantitative Culture of Intestinal Aspirate in Celiac Disease. J. Clin. Gastroenterol. 2009;43:157–161. doi: 10.1097/MCG.0b013e3181557e67. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Chang M.S., Minaya M.T., Cheng J., Connor B.A., Lewis S.K., Green P.H.R. Double-Blind Randomized Controlled Trial of Rifaximin for Persistent Symptoms in Patients with Celiac Disease. Dig. Dis. Sci. 2011;56:2939–2946. doi: 10.1007/s10620-011-1719-6. [PubMed] [CrossRef] [Google Scholar]
- Lasa J.S., Zubiaurre I., Fanjul I., Olivera P., Soifer L. Small Intestinal Bacterial Overgrowth Prevalence in Celiac Disease Patients Is Similar in Healthy Subjects and Lower in Irritable Bowel Syndrome Patients. Rev. Gastroenterol. México (Engl. Ed.) 2015;80:171–174. doi: 10.1016/j.rgmxen.2015.06.003. [PubMed] [CrossRef] [Google Scholar]
- Paik C.N., Choi M.-G., Lim C.H., Park J.M., Chung W.C., Lee K.-M., Jun K.-H., Song K.Y., Jeon H.M., Chin H.-M., et al. The Role of Small Intestinal Bacterial Overgrowth in Postgastrectomy Patients: Bacterial Overgrowth and Gastrectomy. Neurogastroenterol. Motil. 2011;23:e191–e196. doi: 10.1111/j.1365-2982.2011.01686.x. [PubMed] [CrossRef] [Google Scholar]
- Heneghan H.M., Zaborowski A., Fanning M., McHugh A., Doyle S., Moore J., Ravi N., Reynolds J.V. Prospective Study of Malabsorption and Malnutrition After Esophageal and Gastric Cancer Surgery. Ann. Surg. 2015;262:803–808. doi: 10.1097/SLA.0000000000001445. [PubMed] [CrossRef] [Google Scholar]
- Sabate J.-M., Coupaye M., Ledoux S., Castel B., Msika S., Coffin B., Jouet P. Consequences of Small Intestinal Bacterial Overgrowth in Obese Patients Before and After Bariatric Surgery. Obes. Surg. 2017;27:599–605. doi: 10.1007/s11695-016-2343-5. [PubMed] [CrossRef] [Google Scholar]
- Kim D.B., Paik C.-N., Kim Y.J., Lee J.M., Jun K.-H., Chung W.C., Lee K.-M., Yang J.-M., Choi M.-G. Positive Glucose Breath Tests in Patients with Hysterectomy, Gastrectomy, and Cholecystectomy. Gut Liver. 2017;11:237–242. doi: 10.5009/gnl16132. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Rao S.S.C., Tan G., Abdulla H., Yu S., Larion S., Leelasinjaroen P. Does Colectomy Predispose to Small Intestinal Bacterial (SIBO) and Fungal Overgrowth (SIFO)? Clin. Transl. Gastroenterol. 2018;9:e146. doi: 10.1038/s41424-018-0011-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Mouillot T., Rhyman N., Gauthier C., Paris J., Lang A.-S., Lepers-Tassy S., Manfredi S., Lepage C., Leloup C., Jacquin-Piques A., et al. Study of Small Intestinal Bacterial Overgrowth in a Cohort of Patients with Abdominal Symptoms Who Underwent Bariatric Surgery. Obes. Surg. 2020;30:2331–2337. doi: 10.1007/s11695-020-04477-5. [PubMed] [CrossRef] [Google Scholar]
- Sabaté J.-M., Jouët P., Harnois F., Mechler C., Msika S., Grossin M., Coffin B. High Prevalence of Small Intestinal Bacterial Overgrowth in Patients with Morbid Obesity: A Contributor to Severe Hepatic Steatosis. Obes. Surg. 2008;18:371–377. doi: 10.1007/s11695-007-9398-2. [PubMed] [CrossRef] [Google Scholar]
- Madrid A.M., Poniachik J., Quera R., Defilippi C. Small Intestinal Clustered Contractions and Bacterial Overgrowth: A Frequent Finding in Obese Patients. Dig. Dis. Sci. 2011;56:155–160. doi: 10.1007/s10620-010-1239-9. [PubMed] [CrossRef] [Google Scholar]
- Fialho A., Fialho A., Thota P., McCullough A., Shen B. Higher Visceral to Subcutaneous Fat Ratio Is Associated with Small Intestinal Bacterial Overgrowth. Nutr. Metab. Cardiovasc. Dis. 2016;26:773–777. doi: 10.1016/j.numecd.2016.04.007. [PubMed] [CrossRef] [Google Scholar]
- Roland B.C., Lee D., Miller L.S., Vegesna A., Yolken R., Severance E., Prandovszky E., Zheng X.E., Mullin G.E. Obesity Increases the Risk of Small Intestinal Bacterial Overgrowth (SIBO) Neurogastroenterol. Motil. 2018;30:e13199. doi: 10.1111/nmo.13199. [PubMed] [CrossRef] [Google Scholar]
- Wigg A.J., Roberts-Thomson I.C., Dymock R.B., McCarthy P.J., Grose R.H., Cummins A.G. The Role of Small Intestinal Bacterial Overgrowth, Intestinal Permeability, Endotoxaemia, and Tumour Necrosis Factor Alpha in the Pathogenesis of Non-Alcoholic Steatohepatitis. Gut. 2001;48:206–211. doi: 10.1136/gut.48.2.206. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Sajjad A., Mottershead M., Syn W.K., Jones R., Smith S., Nwokolo C.U. Ciprofloxacin Suppresses Bacterial Overgrowth, Increases Fasting Insulin but Does Not Correct Low Acylated Ghrelin Concentration in Non-Alcoholic Steatohepatitis. Aliment. Pharm. 2005;22:291–299. doi: 10.1111/j.1365-2036.2005.02562.x. [PubMed] [CrossRef] [Google Scholar]
- Miele L., Valenza V., La Torre G., Montalto M., Cammarota G., Ricci R., Mascianà R., Forgione A., Gabrieli M.L., Perotti G., et al. Increased Intestinal Permeability and Tight Junction Alterations in Nonalcoholic Fatty Liver Disease. Hepatology. 2009;49:1877–1887. doi: 10.1002/hep.22848. [PubMed] [CrossRef] [Google Scholar]
- Shanab A.A., Scully P., Crosbie O., Buckley M., O’Mahony L., Shanahan F., Gazareen S., Murphy E., Quigley E.M.M. Small Intestinal Bacterial Overgrowth in Nonalcoholic Steatohepatitis: Association with Toll-Like Receptor 4 Expression and Plasma Levels of Interleukin 8. Dig. Dis. Sci. 2011;56:1524–1534. doi: 10.1007/s10620-010-1447-3. [PubMed] [CrossRef] [Google Scholar]
- Fialho A., Fialho A., Thota P., McCullough A.J., Shen B. Small Intestinal Bacterial Overgrowth Is Associated with Non- Alcoholic Fatty Liver Disease. JGLD. 2016;25:159–165. doi: 10.15403/jgld.2014.1121.252.iwg. [PubMed] [CrossRef] [Google Scholar]
- Ghoshal U.C., Baba C.S., Ghoshal U., Alexander G., Misra A., Saraswat V.A., Choudhuri G. Low-Grade Small Intestinal Bacterial Overgrowth Is Common in Patients with Non-Alcoholic Steatohepatitis on Quantitative Jejunal Aspirate Culture. Indian J. Gastroenterol. 2017;36:390–399. doi: 10.1007/s12664-017-0797-6. [PubMed] [CrossRef] [Google Scholar]
- Mikolasevic I., Delija B., Mijic A., Stevanovic T., Skenderevic N., Sosa I., Krznaric-Zrnic I., Abram M., Krznaric Z., Domislovic V., et al. Small Intestinal Bacterial Overgrowth and Non-Alcoholic Fatty Liver Disease Diagnosed by Transient Elastography and Liver Biopsy. Int. J. Clin. Pract. 2021;75:e13947. doi: 10.1111/ijcp.13947. [PubMed] [CrossRef] [Google Scholar]
- Shi H., Mao L., Wang L., Quan X., Xu X., Cheng Y., Zhu S., Dai F. Small Intestinal Bacterial Overgrowth and Orocecal Transit Time in Patients of Nonalcoholic Fatty Liver Disease. Eur. J. Gastroenterol. Hepatol. 2021;33:e535–e539. doi: 10.1097/MEG.0000000000002157. [PubMed] [CrossRef] [Google Scholar]
- Chesta J., Silva M., Thompson L., del Canto E., Defilippi C. Bacterial overgrowth in small intestine in patients with liver cirrhosis. Rev. Med. Chil. 1991;119:626–632. [PubMed] [Google Scholar]
- Casafont Morencos F., de las Heras Castano G., Martín Ramos L., López Arias M.J., Ledesma F., Pons Romero F. Small Bowel Bacterial Overgrowth in Patients with Alcoholic Cirrhosis. Dig. Dis. Sci. 1995;40:1252–1256. doi: 10.1007/BF02065533. [PubMed] [CrossRef] [Google Scholar]
- Madrid A.M., Cumsille F., Defilippi C. Altered Small Bowel Motility in Patients with Liver Cirrhosis Depends on Severity of Liver Disease. Dig. Dis. Sci. 1997;42:738–742. doi: 10.1023/A:1018899611006. [PubMed] [CrossRef] [Google Scholar]
- Yang C.-Y., Chang C.-S., Chen G.-H. Small- Intestinal Bacterial Overgrowth in Patients with Liver Cirrhosis, Diagnosed with Glu- Cose H2 or CH4 Breath Tests. Scand. J. Gastroenterol. 1998;33:867–871. doi: 10.1080/00365529850171549. [PubMed] [CrossRef] [Google Scholar]
- Bauer T.M., Schwacha H., Steinbrückner B., Brinkmann F.E., Ditzen A.K., Kist M., Blum H.E. Diagnosis of Small Intestinal Bacterial Overgrowth in Patients with Cirrhosis of the Liver: Poor Performance of the Glucose Breath Hydrogen Test. J. Hepatol. 2000;33:382–386. doi: 10.1016/S0168-8278(00)80273-1. [PubMed] [CrossRef] [Google Scholar]
- Gunnarsdottir S.A., Sadik R., Shev S., Simren M., Sjovall H., Stotzer P.-O., Abrahamsson H., Olsson R., Bjornsson E.S. Small Intestinal Motility Disturbances and Bacterial Overgrowth in Patients with Liver Cirrhosis and Portal Hypertension. Am. J. Gastroenterol. 2003;98:1362–1370. doi: 10.1111/j.1572-0241.2003.07475.x. [PubMed] [CrossRef] [Google Scholar]
- Nancey S., Moussata D., Roman S., Benmansour H., Claudel S., Flourié B. A Positive Breath Hydrogen Test Does Not Predict the Occurrence of a Spontaneous Bacterial Peritonitis in Cirrhotic Patients with Ascites. Digestion. 2009;79:252–258. doi: 10.1159/000215617. [PubMed] [CrossRef] [Google Scholar]
- Pande C., Kumar A., Sarin S.K. Small-Intestinal Bacterial Overgrowth in Cirrhosis Is Related to the Severity of Liver Disease. Aliment. Pharmacol. Ther. 2009;29:1273–1281. doi: 10.1111/j.1365-2036.2009.03994.x. [PubMed] [CrossRef] [Google Scholar]
- Jun D.W., Kim K.T., Lee O.Y., Chae J.D., Son B.K., Kim S.H., Jo Y.J., Park Y.S. Association Between Small Intestinal Bacterial Overgrowth and Peripheral Bacterial DNA in Cirrhotic Patients. Dig. Dis. Sci. 2010;55:1465–1471. doi: 10.1007/s10620-009-0870-9. [PubMed] [CrossRef] [Google Scholar]
- Gupta A., Dhiman R.K., Kumari S., Rana S., Agarwal R., Duseja A., Chawla Y. Role of Small Intestinal Bacterial Overgrowth and Delayed Gastrointestinal Transit Time in Cirrhotic Patients with Minimal Hepatic Encephalopathy. J. Hepatol. 2010;53:849–855. doi: 10.1016/j.jhep.2010.05.017. [PubMed] [CrossRef] [Google Scholar]
- Zhang Y., Feng Y., Cao B., Tian Q. The Effect of Small Intestinal Bacterial Overgrowth on Minimal Hepatic Encephalopathy in Patients with Cirrhosis. Arch. Med. Sci. 2016;12:592–596. doi: 10.5114/aoms.2015.55675. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Kaur J., Rana S.V., Gupta R., Gupta V., Sharma S.K., Dhawan D.K. Prolonged Orocecal Transit Time Enhances Serum Bile Acids Through Bacterial Overgrowth, Contributing Factor to Gallstone Disease. J. Clin. Gastroenterol. 2014;48:365–369. doi: 10.1097/MCG.0b013e3182a14fba. [PubMed] [CrossRef] [Google Scholar]
- Kim D.B., Paik C.-N., Song D.S., Kim Y.J., Lee J.M. The Characteristics of Small Intestinal Bacterial Overgrowth in Patients with Gallstone Diseases: Gallstone Diseases and SIBO. J. Gastroenterol. Hepatol. 2018;33:1477–1484. doi: 10.1111/jgh.14113. [PubMed] [CrossRef] [Google Scholar]
- Casellas F., Guarner L., Vaquero E., Antolín M., de Gracia X., Malagelada J.R. Hydrogen Breath Test with Glucose in Exocrine Pancreatic Insufficiency. Pancreas. 1998;16:481–486. doi: 10.1097/00006676-199805000-00004. [PubMed] [CrossRef] [Google Scholar]
- Trespi E., Ferrieri A. Intestinal Bacterial Overgrowth During Chronic Pancreatitis. Curr. Med. Res. Opin. 1999;15:47–52. doi: 10.1185/03007999909115173. [PubMed] [CrossRef] [Google Scholar]
- Signoretti M., Stigliano S., Valente R., Piciucchi M., Fave G.D., Capurso G. Small Intestinal Bacterial Overgrowth in Patients With Chronic Pancreatitis. J. Clin. Gastroenterol. 2014;48:S52–S55. doi: 10.1097/MCG.0000000000000238. [PubMed] [CrossRef] [Google Scholar]
- Kumar K., Ghoshal U.C., Srivastava D., Misra A., Mohindra S. Small Intestinal Bacterial Overgrowth Is Common Both among Patients with Alcoholic and Idiopathic Chronic Pancreatitis. Pancreatology. 2014;14:280–283. doi: 10.1016/j.pan.2014.05.792. [PubMed] [CrossRef] [Google Scholar]
- Kim D.B., Paik C.-N., Sung H.J., Chung W.C., Lee K.-M., Yang J.-M., Choi M.-G. Breath Hydrogen and Methane Are Associated with Intestinal Symptoms in Patients with Chronic Pancreatitis. Pancreatology. 2015;15:514–518. doi: 10.1016/j.pan.2015.07.005. [PubMed] [CrossRef] [Google Scholar]
- Ní Chonchubhair H.M., Bashir Y., Dobson M., Ryan B.M., Duggan S.N., Conlon K.C. The Prevalence of Small Intestinal Bacterial Overgrowth in Non-Surgical Patients with Chronic Pancreatitis and Pancreatic Exocrine Insufficiency (PEI) Pancreatology. 2018;18:379–385. doi: 10.1016/j.pan.2018.02.010. [PubMed] [CrossRef] [Google Scholar]
- Lee A.A., Baker J.R., Wamsteker E.J., Saad R., DiMagno M.J. Small Intestinal Bacterial Overgrowth Is Common in Chronic Pancreatitis and Associates with Diabetes, Chronic Pancreatitis Severity, Low Zinc Levels, and Opiate Use. Am. J. Gastroenterol. 2019;114:1163–1171. doi: 10.14309/ajg.0000000000000200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Zhang M., Zhu H.-M., He F., Li B.-Y., Li X.-C. Association between Acute Pancreatitis and Small Intestinal Bacterial Overgrowth Assessed by Hydrogen Breath Test. WJG. 2017;23:8591–8596. doi: 10.3748/wjg.v23.i48.8591. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Kim D.B., Paik C.-N., Lee J.M., Kim Y.-J. Association between Increased Breath Hydrogen Methane Concentration and Prevalence of Glucose Intolerance in Acute Pancreatitis. J. Breath Res. 2020;14:026006. doi: 10.1088/1752-7163/ab5460. [PubMed] [CrossRef] [Google Scholar]
- Lisowska A., Wójtowicz J., Walkowiak J. Small Intestine Bacterial Overgrowth Is Frequent in Cystic Fibrosis: Combined Hydrogen and Methane Measurements Are Required for Its Detection. Acta Biochim. Pol. 2009;56:631–634. doi: 10.18388/abp.2009_2495. [PubMed] [CrossRef] [Google Scholar]
- Dorsey J., Gonska T. Bacterial Overgrowth, Dysbiosis, Inflammation, and Dysmotility in the Cystic Fibrosis Intestine. J. Cyst. Fibros. 2017;16:S14–S23. doi: 10.1016/j.jcf.2017.07.014. [PubMed] [CrossRef] [Google Scholar]
- Furnari M., De Alessandri A., Cresta F., Haupt M., Bassi M., Calvi A., Haupt R., Bodini G., Ahmed I., Bagnasco F., et al. The Role of Small Intestinal Bacterial Overgrowth in Cystic Fibrosis: A Randomized Case-Controlled Clinical Trial with Rifaximin. J. Gastroenterol. 2019;54:261–270. doi: 10.1007/s00535-018-1509-4. [PubMed] [CrossRef] [Google Scholar]
- Pasini E., Aquilani R., Testa C., Baiardi P., Angioletti S., Boschi F., Verri M., Dioguardi F. Pathogenic Gut Flora in Patients with Chronic Heart Failure. JACC Heart Fail. 2016;4:220–227. doi: 10.1016/j.jchf.2015.10.009. [PubMed] [CrossRef] [Google Scholar]
- Song Y., Liu Y., Qi B., Cui X., Dong X., Wang Y., Han X., Li F., Shen D., Zhang X., et al. Association of Small Intestinal Bacterial Overgrowth with Heart Failure and Its Prediction for Short-Term Outcomes. JAHA. 2021 doi: 10.1161/JAHA.119.015292. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Ponziani F.R., Pompili M., Di Stasio E., Zocco M.A., Gasbarrini A., Flore R. Subclinical Atherosclerosis Is Linked to Small Intestinal Bacterial Overgrowth viaVitamin K2-Dependent Mechanisms. WJG. 2017;23:1241. doi: 10.3748/wjg.v23.i7.1241. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Fialho A., Fialho A., Kochhar G., Schenone A.L., Thota P., McCullough A.J., Shen B. Association Between Small Intestinal Bacterial Overgrowth by Glucose Breath Test and Coronary Artery Disease. Dig. Dis. Sci. 2018;63:412–421. doi: 10.1007/s10620-017-4828-z. [PubMed] [CrossRef] [Google Scholar]
- Fialho A., Fialho A., Schenone A., Thota P., McCullough A., Shen B. Association between Small Intestinal Bacterial Overgrowth and Deep Vein Thrombosis. Gastroenterol. Rep. 2016;4:299–303. doi: 10.1093/gastro/gow004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Cheng X., Zhang L., Xie N.-C., Xu H.-L., Lian Y.-J. Association between Small-intestinal Bacterial Overgrowth and Deep Vein Thrombosis in Patients with Spinal Cord Injuries. J. Thromb. Haemost. 2017;15:304–311. doi: 10.1111/jth.13583. [PubMed] [CrossRef] [Google Scholar]
- Ojetti V., Pitocco D., Scarpellini E., Zaccardi F., Scaldaferri F., Gigante G., Gasbarrini G., Ghirlanda G., Gasbarrini A. Small Bowel Bacterial Overgrowth and Type 1 Diabetes. Eur. Rev. Med. Pharm. Sci. 2009;13:419–423. [PubMed] [Google Scholar]
- Faria M., Pavin E.J., Parisi M.C.R., Lorena S.L.S., Brunetto S.Q., Ramos C.D., Pavan C.R., Mesquita M.A. Delayed Small Intestinal Transit in Patients with Long-Standing Type 1 Diabetes Mellitus: Investigation of the Relationships with Clinical Features, Gastric Emptying, Psychological Distress, and Nutritional Parameters. Diabetes. Technol. Ther. 2013;15:32–38. doi: 10.1089/dia.2012.0158. [PubMed] [CrossRef] [Google Scholar]
- Malik A., Morya R.K., Bhadada S.K., Rana S. Type 1 Diabetes Mellitus: Complex Interplay of Oxidative Stress, Cytokines, Gastrointestinal Motility and Small Intestinal Bacterial Overgrowth. Eur. J. Clin. Investig. 2018;48:e13021. doi: 10.1111/eci.13021. [PubMed] [CrossRef] [Google Scholar]
- Rana S., Bhansali A., Bhadada S., Sharma S., Kaur J., Singh K. Orocecal Transit Time and Small Intestinal Bacterial Overgrowth in Type 2 Diabetes Patients from North India. Diabetes Technol. Ther. 2011;13:1115–1120. doi: 10.1089/dia.2011.0078. [PubMed] [CrossRef] [Google Scholar]
- Rana S.V., Malik A., Bhadada S.K., Sachdeva N., Morya R.K., Sharma G. Malabsorption, Orocecal Transit Time and Small Intestinal Bacterial Overgrowth in Type 2 Diabetic Patients: A Connection. Ind. J. Clin. Biochem. 2017;32:84–89. doi: 10.1007/s12291-016-0569-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Zietz B., Lock G., Straub R.H., Braun B., Scholmerich J., Palitzsch K.D. Small-Bowel Bacterial Overgrowth in Diabetic Subjects Is Associated with Cardiovascular Autonomic Neuropathy. Diabetes Care. 2000;23:1200–1201. doi: 10.2337/diacare.23.8.1200. [PubMed] [CrossRef] [Google Scholar]
- Lauritano E.C., Bilotta A.L., Gabrielli M., Scarpellini E., Lupascu A., Laginestra A., Novi M., Sottili S., Serricchio M., Cammarota G., et al. Association between Hypothyroidism and Small Intestinal Bacterial Overgrowth. J. Clin. Endocrinol. Metab. 2007;92:4180–4184. doi: 10.1210/jc.2007-0606. [PubMed] [CrossRef] [Google Scholar]
- Brechmann T., Sperlbaum A., Schmiegel W. Levothyroxine Therapy and Impaired Clearance Are the Strongest Contributors to Small Intestinal Bacterial Overgrowth: Results of a Retrospective Cohort Study. WJG. 2017;23:842. doi: 10.3748/wjg.v23.i5.842. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Konrad P., Chojnacki J., Kaczka A., Pawłowicz M., Rudnicki C., Chojnacki C. Thyroid dysfunction in patients with small intestinal bacterial overgrowth. Pol. Merkur. Lek. 2018;44:15–18. [PubMed] [Google Scholar]
- Gabrielli M., Bonazzi P., Scarpellini E., Bendia E., Lauritano E.C., Fasano A., Ceravolo M.G., Capecci M., Rita Bentivoglio A., Provinciali L., et al. Prevalence of Small Intestinal Bacterial Overgrowth in Parkinson’s Disease. Mov. Disord. 2011;26:889–892. doi: 10.1002/mds.23566. [PubMed] [CrossRef] [Google Scholar]
- Dobbs R., Charlett A., Dobbs S.M., Weller C., Ibrahim M.A.A., Iguodala O., Smee C., Plant J., Lawson A.J., Taylor D., et al. Leukocyte-Subset Counts in Idiopathic Parkinsonism Provide Clues to a Pathogenic Pathway Involving Small Intestinal Bacterial Overgrowth. A Surveillance Study. Gut Pathog. 2012;4:12. doi: 10.1186/1757-4749-4-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Fasano A., Visanji N.P., Liu L.W.C., Lang A.E., Pfeiffer R.F. Gastrointestinal Dysfunction in Parkinson’s Disease. Lancet Neurol. 2015;14:625–639. doi: 10.1016/S1474-4422(15)00007-1. [PubMed] [CrossRef] [Google Scholar]
- Tan A.H., Mahadeva S., Thalha A.M., Gibson P.R., Kiew C.K., Yeat C.M., Ng S.W., Ang S.P., Chow S.K., Tan C.T., et al. Small Intestinal Bacterial Overgrowth in Parkinson’s Disease. Park. Relat. Disord. 2014;20:535–540. doi: 10.1016/j.parkreldis.2014.02.019. [PubMed] [CrossRef] [Google Scholar]
- Niu X.-L., Liu L., Song Z.-X., Li Q., Wang Z.-H., Zhang J.-L., Li H.-H. Prevalence of Small Intestinal Bacterial Overgrowth in Chinese Patients with Parkinson’s Disease. J. Neural. Transm. 2016;123:1381–1386. doi: 10.1007/s00702-016-1612-8. [PubMed] [CrossRef] [Google Scholar]
- Su A., Gandhy R., Barlow C., Triadafilopoulos G. Utility of the Wireless Motility Capsule and Lactulose Breath Testing in the Evaluation of Patients with Parkinson’s Disease Who Present with Functional Gastrointestinal Symptoms. BMJ Open Gastroenterol. 2017;4:e000132. doi: 10.1136/bmjgast-2017-000132. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Hasuike Y., Endo T., Koroyasu M., Matsui M., Mori C., Yamadera M., Fujimura H., Sakoda S. Bile Acid Abnormality Induced by Intestinal Dysbiosis Might Explain Lipid Metabolism in Parkinson’s Disease. Med. Hypotheses. 2020;134:109436. doi: 10.1016/j.mehy.2019.109436. [PubMed] [CrossRef] [Google Scholar]
- Wang L., Yu Y.-M., Zhang Y., Zhang J., Lu N., Liu N. Hydrogen Breath Test to Detect Small Intestinal Bacterial Overgrowth: A Prevalence Case–Control Study in Autism. Eur. Child Adolesc. Psychiatry. 2018;27:233–240. doi: 10.1007/s00787-017-1039-2. [PubMed] [CrossRef] [Google Scholar]
- Rao S.S.C., Rehman A., Yu S., Andino N.M. de Brain Fogginess, Gas and Bloating: A Link between SIBO, Probiotics and Metabolic Acidosis. Clin. Transl. Gastroenterol. 2018;9:162. doi: 10.1038/s41424-018-0030-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Parodi A., Sessarego M., Greco A., Bazzica M., Filaci G., Setti M., Savarino E., Indiveri F., Savarino V., Ghio M. Small Intestinal Bacterial Overgrowth in Patients Suffering from Scleroderma: Clinical Effectiveness of Its Eradication. Am. J. Gastroenterol. 2008;103:1257–1262. doi: 10.1111/j.1572-0241.2007.01758.x. [PubMed] [CrossRef] [Google Scholar]
- Marie I., Ducrotte P., Denis P., Menard J.-F., Levesque H. Small Intestinal Bacterial Overgrowth in Systemic Sclerosis. Rheumatology. 2009;48:1314–1319. doi: 10.1093/rheumatology/kep226. [PubMed] [CrossRef] [Google Scholar]
- Fynne L., Worsøe J., Gregersen T., Schlageter V., Laurberg S., Krogh K. Gastrointestinal Transit in Patients with Systemic Sclerosis. Scand. J. Gastroenterol. 2011;46:1187–1193. doi: 10.3109/00365521.2011.603158. [PubMed] [CrossRef] [Google Scholar]
- Savarino E., Mei F., Parodi A., Ghio M., Furnari M., Gentile A., Berdini M., Di Sario A., Bendia E., Bonazzi P., et al. Gastrointestinal Motility Disorder Assessment in Systemic Sclerosis. Rheumatology. 2013;52:1095–1100. doi: 10.1093/rheumatology/kes429. [PubMed] [CrossRef] [Google Scholar]
- Gemignani L., Savarino V., Ghio M., Parodi A., Zentilin P., de Bortoli N., Negrini S., Furnari M., Dulbecco P., Giambruno E., et al. Lactulose Breath Test to Assess Oro-Cecal Transit Delay and Estimate Esophageal Dysmotility in Scleroderma Patients. Semin. Arthritis Rheum. 2013;42:522–529. doi: 10.1016/j.semarthrit.2012.09.004. [PubMed] [CrossRef] [Google Scholar]
- Marie I., Leroi A.-M., Menard J.-F., Levesque H., Quillard M., Ducrotte P. Fecal Calprotectin in Systemic Sclerosis and Review of the Literature. Autoimmun. Rev. 2015;14:547–554. doi: 10.1016/j.autrev.2015.01.018. [PubMed] [CrossRef] [Google Scholar]
- Adarsh M.B., Sharma S.K., Sinha S.K., Bhattacharya A., Rana S., Dhir V., Singh S. Gastrointestinal Dysmotility and Infections in Systemic Sclerosis- An Indian Scenario. Curr. Rheumatol. Rev. 2018;14:172–176. doi: 10.2174/1573397113666170425145405. [PubMed] [CrossRef] [Google Scholar]
- Sawadpanich K., Soison P., Chunlertrith K., Mairiang P., Sukeepaisarnjaroen W., Sangchan A., Suttichaimongkol T., Foocharoen C. Prevalence and Associated Factors of Small Intestinal Bacterial Overgrowth among Systemic Sclerosis Patients. Int. J. Rheum. Dis. 2019;22:695–699. doi: 10.1111/1756-185X.13495. [PubMed] [CrossRef] [Google Scholar]
- García-Collinot G., Madrigal-Santillán E.O., Martínez-Bencomo M.A., Carranza-Muleiro R.A., Jara L.J., Vera-Lastra O., Montes-Cortes D.H., Medina G., Cruz-Domínguez M.P. Effectiveness of Saccharomyces Boulardii and Metronidazole for Small Intestinal Bacterial Overgrowth in Systemic Sclerosis. Dig. Dis. Sci. 2019;65:1134–1143. doi: 10.1007/s10620-019-05830-0. [PubMed] [CrossRef] [Google Scholar]
- Parodi A., Paolino S., Greco A., Drago F., Mansi C., Rebora A., Parodi A., Savarino V. Small Intestinal Bacterial Overgrowth in Rosacea: Clinical Effectiveness of Its Eradication. Clin. Gastroenterol. Hepatol. 2008;6:759–764. doi: 10.1016/j.cgh.2008.02.054. [PubMed] [CrossRef] [Google Scholar]
- Drago F., De Col E., Agnoletti A.F., Schiavetti I., Savarino V., Rebora A., Paolino S., Cozzani E., Parodi A. The Role of Small Intestinal Bacterial Overgrowth in Rosacea: A 3-Year Follow-Up. J. Am. Acad. Dermatol. 2016;75:e113–e115. doi: 10.1016/j.jaad.2016.01.059. [PubMed] [CrossRef] [Google Scholar]
- Strid H., Simrén M., Stotzer P.-O., Ringström G., Abrahamsson H., Björnsson E.S. Patients with Chronic Renal Failure Have Abnormal Small Intestinal Motility and a High Prevalence of Small Intestinal Bacterial Overgrowth. Digestion. 2003;67:129–137. doi: 10.1159/000071292. [PubMed] [CrossRef] [Google Scholar]
- Bernhardt H., Knoke M. Recent Studies on the Microbial Ecology of the Upper Gastrointestinal Tract. Infection. 1989;17:259–263. doi: 10.1007/BF01639536. [PubMed] [CrossRef] [Google Scholar]
- Dukowicz A.C., Lacy B.E., Levine G.M. Small Intestinal Bacterial Overgrowth: A Comprehensive Review. Gastroenterol. Hepatol. 2007;3:112–122. [PMC free article] [PubMed] [Google Scholar]
- Bouhnik Y., Alain S., Attar A., Flourié B., Raskine L., Sanson-Le Pors M.J., Rambaud J.-C. Bacterial Populations Contaminating The Upper Gut in Patients With Small Intestinal Bacterial Overgrowth Syndrome. Am. J. Gastroenterol. 1999;94:1327–1331. doi: 10.1111/j.1572-0241.1999.01016.x. [PubMed] [CrossRef] [Google Scholar]
- Rezaie A., Buresi M., Lembo A., Lin H., McCallum R., Rao S., Schmulson M., Valdovinos M., Zakko S., Pimentel M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am. J. Gastroenterol. 2017;112:775–784. doi: 10.1038/ajg.2017.46. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Roland B.C., Ciarleglio M.M., Clarke J.O., Semler J.R., Tomakin E., Mullin G.E., Pasricha P.J. Low Ileocecal Valve Pressure Is Significantly Associated with Small Intestinal Bacterial Overgrowth (SIBO) Dig. Dis. Sci. 2014;59:1269–1277. doi: 10.1007/s10620-014-3166-7. [PubMed] [CrossRef] [Google Scholar]
- Khoshini R., Dai S.-C., Lezcano S., Pimentel M. A Systematic Review of Diagnostic Tests for Small Intestinal Bacterial Overgrowth. Dig. Dis. Sci. 2008;53:1443–1454. doi: 10.1007/s10620-007-0065-1. [PubMed] [CrossRef] [Google Scholar]
- Jacobs C., Coss Adame E., Attaluri A., Valestin J., Rao S.S.C. Dysmotility and Proton Pump Inhibitor Use Are Independent Risk Factors for Small Intestinal Bacterial and/or Fungal Overgrowth. Aliment. Pharm. 2013;37:1103–1111. doi: 10.1111/apt.12304. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Lombardo L., Foti M., Ruggia O., Chiecchio A. Increased Incidence of Small Intestinal Bacterial Overgrowth During Proton Pump Inhibitor Therapy. Clin. Gastroenterol. Hepatol. 2010;8:504–508. doi: 10.1016/j.cgh.2009.12.022. [PubMed] [CrossRef] [Google Scholar]
- Saltzman J.R., Kowdley K.V., Pedrosa M.C., Sepe T., Golner B., Perrone G., Russell R.M. Bacterial Overgrowth without Clinical Malabsorption in Elderly Hypochlorhydric Subjects. Gastroenterology. 1994;106:615–623. doi: 10.1016/0016-5085(94)90693-9. [PubMed] [CrossRef] [Google Scholar]
- Gray J.D., Shiner M. Influence of Gastric PH on Gastric and Jejunal Flora. Gut. 1967;8:574–581. doi: 10.1136/gut.8.6.574. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Weston A.P., Biddle W.L., Bhatia P.S., Miner P.B. Terminal Ileal Mucosal Mast Cells in Irritable Bowel Syndrome. Dig. Dis. Sci. 1993;38:1590–1595. doi: 10.1007/BF01303164. [PubMed] [CrossRef] [Google Scholar]
- Salzmann J.L., Peltier-Koch F., Bloch F., Petite J.P., Camilleri J.P. Morphometric Study of Colonic Biopsies: A New Method of Estimating Inflammatory Diseases. Lab. Investig. 1989;60:847–851. [PubMed] [Google Scholar]
- Lin H.C. Small Intestinal Bacterial Overgrowth: A Framework for Understanding Irritable Bowel Syndrome. JAMA. 2004;292:852–858. doi: 10.1001/jama.292.7.852. [PubMed] [CrossRef] [Google Scholar]
- Aziz I., Törnblom H., Simrén M. Small Intestinal Bacterial Overgrowth as a Cause for Irritable Bowel Syndrome: Guilty or Not Guilty? Curr. Opin. Gastroenterol. 2017;33:196–202. doi: 10.1097/MOG.0000000000000348. [PubMed] [CrossRef] [Google Scholar]
- Pimentel M., Mathur R., Chang C. Gas and the Microbiome. Curr. Gastroenterol. Rep. 2013;15:356. doi: 10.1007/s11894-013-0356-y. [PubMed] [CrossRef] [Google Scholar]
- Cohen-Mekelburg S., Tafesh Z., Coburn E., Weg R., Malik N., Webb C., Hammad H., Scherl E., Bosworth B.P. Testing and Treating Small Intestinal Bacterial Overgrowth Reduces Symptoms in Patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2018;63:2439–2444. doi: 10.1007/s10620-018-5109-1. [PubMed] [CrossRef] [Google Scholar]
- Fraquelli M., Bardella M.T., Peracchi M., Cesana B.M., Bianchi P.A., Conte D. Gallbladder Emptying and Somatostatin and Cholecystokinin Plasma Levels in Celiac Disease. Am. J. Gastroenterol. 1999;94:1866–1870. doi: 10.1111/j.1572-0241.1999.01221.x. [PubMed] [CrossRef] [Google Scholar]
- Bardella M.T., Fraquelli M., Peracchi M., Cesana B.M., Bianchi P.A. Gastric Emptying and Plasma Neurotensin Levels in Untreated Celiac Patients. Scand. J. Gastroenterol. 2000;35:269–273. doi: 10.1080/003655200750024137. [PubMed] [CrossRef] [Google Scholar]
- Remes-Troche J.M., Adames K., Castillo-Rodal A.I., Ramírez T., Barreto-Zuñiga R., López-Vidal Y., Uscanga L.F. Intraepithelial Γδ+ Lymphocytes: A Comparative Study between Celiac Disease, Small Intestinal Bacterial Overgrowth, and Irritable Bowel Syndrome. J. Clin. Gastroenterol. 2007;41:671–676. doi: 10.1097/01.mcg.0000247994.34957.ae. [PubMed] [CrossRef] [Google Scholar]
- Chalasani N., Younossi Z., Lavine J.E., Diehl A.M., Brunt E.M., Cusi K., Charlton M., Sanyal A.J. The Diagnosis and Management of Non-Alcoholic Fatty Liver Disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–2023. doi: 10.1002/hep.25762. [PubMed] [CrossRef] [Google Scholar]
- Araújo A.R., Rosso N., Bedogni G., Tiribelli C., Bellentani S. Global Epidemiology of Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis: What We Need in the Future. Liver Int. 2018;38((Suppl. 1)):47–51. doi: 10.1111/liv.13643. [PubMed] [CrossRef] [Google Scholar]
- Mouzaki M., Comelli E.M., Arendt B.M., Bonengel J., Fung S.K., Fischer S.E., McGilvray I.D., Allard J.P. Intestinal Microbiota in Patients with Nonalcoholic Fatty Liver Disease. Hepatology. 2013;58:120–127. doi: 10.1002/hep.26319. [PubMed] [CrossRef] [Google Scholar]
- Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., DuGar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.-M., et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Zhu L., Baker S.S., Gill C., Liu W., Alkhouri R., Baker R.D., Gill S.R. Characterization of Gut Microbiomes in Nonalcoholic Steatohepatitis (NASH) Patients: A Connection between Endogenous Alcohol and NASH. Hepatology. 2013;57:601–609. doi: 10.1002/hep.26093. [PubMed] [CrossRef] [Google Scholar]
- Yadav D., Timmons L., Benson J.T., Dierkhising R.A., Chari S.T. Incidence, Prevalence, and Survival of Chronic Pancreatitis: A Population-Based Study. Am. J. Gastroenterol. 2011;106:2192–2199. doi: 10.1038/ajg.2011.328. [PubMed] [CrossRef] [Google Scholar]
- Ghoshal U.C. How to Interpret Hydrogen Breath Tests. J. Neurogastroenterol. Motil. 2011;17:312–317. doi: 10.5056/jnm.2011.17.3.312. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Tan C., Ling Z., Huang Y., Cao Y., Liu Q., Cai T., Yuan H., Liu C., Li Y., Xu K. Dysbiosis of Intestinal Microbiota Associated with Inflammation Involved in the Progression of Acute Pancreatitis. Pancreas. 2015;44:868–875. doi: 10.1097/MPA.0000000000000355. [PubMed] [CrossRef] [Google Scholar]
- De Lisle R.C. Altered Transit and Bacterial Overgrowth in the Cystic Fibrosis Mouse Small Intestine. Am. J. Physiol.-Gastrointest. Liver Physiol. 2007;293:G104–G111. doi: 10.1152/ajpgi.00548.2006. [PubMed] [CrossRef] [Google Scholar]
- Li L., Somerset S. Digestive System Dysfunction in Cystic Fibrosis: Challenges for Nutrition Therapy. Dig. Liver Dis. 2014;46:865–874. doi: 10.1016/j.dld.2014.06.011. [PubMed] [CrossRef] [Google Scholar]
- Sandek A., Bjarnason I., Volk H.-D., Crane R., Meddings J.B., Niebauer J., Kalra P.R., Buhner S., Herrmann R., Springer J., et al. Studies on Bacterial Endotoxin and Intestinal Absorption Function in Patients with Chronic Heart Failure. Int. J. Cardiol. 2012;157:80–85. doi: 10.1016/j.ijcard.2010.12.016. [PubMed] [CrossRef] [Google Scholar]
- Katsimichas T., Ohtani T., Motooka D., Tsukamoto Y., Kioka H., Nakamoto K., Konishi S., Chimura M., Sengoku K., Miyawaki H., et al. Non-Ischemic Heart Failure with Reduced Ejection Fraction Is Associated with Altered Intestinal Microbiota. Circ. J. 2018;82:1640–1650. doi: 10.1253/circj.CJ-17-1285. [PubMed] [CrossRef] [Google Scholar]
- Sandek A., Swidsinski A., Schroedl W., Watson A., Valentova M., Herrmann R., Scherbakov N., Cramer L., Rauchhaus M., Grosse-Herrenthey A., et al. Intestinal Blood Flow in Patients with Chronic Heart Failure. J. Am. Coll. Cardiol. 2014;64:1092–1102. doi: 10.1016/j.jacc.2014.06.1179. [PubMed] [CrossRef] [Google Scholar]
- Mollar A., Villanueva M.P., NÚÑez E., CarratalÁ A., Mora F., BayÉs-GenÍs A., MÍnguez M., Marrachelli V.G., Monleon D., Navarro D., et al. Hydrogen- and Methane-Based Breath Testing and Outcomes in Patients with Heart Failure. J. Card. Fail. 2019;25:319–327. doi: 10.1016/j.cardfail.2018.10.004. [PubMed] [CrossRef] [Google Scholar]
- Niebauer J., Volk H.-D., Kemp M., Dominguez M., Schumann R.R., Rauchhaus M., Poole-Wilson P.A., Coats A.J., Anker S.D. Endotoxin and Immune Activation in Chronic Heart Failure: A Prospective Cohort Study. Lancet. 1999;353:1838–1842. doi: 10.1016/S0140-6736(98)09286-1. [PubMed] [CrossRef] [Google Scholar]
- Sandek A., Rauchhaus M., Anker S.D., von Haehling S. The Emerging Role of the Gut in Chronic Heart Failure. Curr. Opin. Clin. Nutr. Metab. Care. 2008;11:632–639. doi: 10.1097/MCO.0b013e32830a4c6e. [PubMed] [CrossRef] [Google Scholar]
- Anker S.D., von Haehling S. Inflammatory Mediators in Chronic Heart Failure: An Overview. Heart. 2004;90:464–470. doi: 10.1136/hrt.2002.007005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Mayerhofer C.C.K., Awoyemi A.O., Moscavitch S.D., Lappegård K.T., Hov J.R., Aukrust P., Hovland A., Lorenzo A., Halvorsen S., Seljeflot I., et al. Design of the GutHeart-Targeting Gut Microbiota to Treat Heart Failure-Trial: A Phase II, Randomized Clinical Trial: GutHeart Design. ESC Heart Fail. 2018;5:977–984. doi: 10.1002/ehf2.12332. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Tang W.H.W., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X., Wu Y., Hazen S.L. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N. Engl. J. Med. 2013;368:1575–1584. doi: 10.1056/NEJMoa1109400. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Chen M., Yi L., Zhang Y., Zhou X., Ran L., Yang J., Zhu J., Zhang Q., Mi M. Resveratrol Attenuates Trimethylamine- N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio. 2016;7:e02210-15. doi: 10.1128/mBio.02210-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Virally-Monod M., Tielmans D., Kevorkian J.P., Bouhnik Y., Flourie B., Porokhov B., Ajzenberg C., Warnet A., Guillausseau P.J. Chronic Diarrhoea and Diabetes Mellitus: Prevalence of Small Intestinal Bacterial Overgrowth. Diabetes Metab. 1998;24:530–536. [PubMed] [Google Scholar]
- Shi H., Kokoeva M.V., Inouye K., Tzameli I., Yin H., Flier J.S. TLR4 Links Innate Immunity and Fatty Acid–Induced Insulin Resistance. J. Clin. Investig. 2006;116:3015–3025. doi: 10.1172/JCI28898. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Delzenne N.M., Cani P.D., Everard A., Neyrinck A.M., Bindels L.B. Gut Microorganisms as Promising Targets for the Management of Type 2 Diabetes. Diabetologia. 2015;58:2206–2217. doi: 10.1007/s00125-015-3712-7. [PubMed] [CrossRef] [Google Scholar]
- Bytzer P., Talley N.J., Leemon M., Young L.J., Jones M.P., Horowitz M. Prevalence of Gastrointestinal Symptoms Associated With Diabetes Mellitus: A Population-Based Survey of 15,000 Adults. Arch. Intern. Med. 2001;161:1989. doi: 10.1001/archinte.161.16.1989. [PubMed] [CrossRef] [Google Scholar]
- Reddymasu S.C., McCallum R.W. Small Intestinal Bacterial Overgrowth in Gastroparesis: Are There Any Predictors? J. Clin. Gastroenterol. 2010;44:e8–e13. doi: 10.1097/MCG.0b013e3181aec746. [PubMed] [CrossRef] [Google Scholar]
- Vallianou N.G., Stratigou T., Tsagarakis S. Microbiome and Diabetes: Where Are We Now? Diabetes Res. Clin. Pract. 2018;146:111–118. doi: 10.1016/j.diabres.2018.10.008. [PubMed] [CrossRef] [Google Scholar]
- Zaborska K.E., Cummings B.P. Rethinking Bile Acid Metabolism and Signaling for Type 2 Diabetes Treatment. Curr. Diab. Rep. 2018;18:109. doi: 10.1007/s11892-018-1092-3. [PubMed] [CrossRef] [Google Scholar]
- Ciobanu L., Dumitrascu D.L. Gastrointestinal Motility Disorders in Endocrine Diseases. Pol. Arch. Intern. Med. 2011;121:129–136. doi: 10.20452/pamw.1042. [PubMed] [CrossRef] [Google Scholar]
- Almandoz J.P., Gharib H. Hypothyroidism: Etiology, Diagnosis, and Management. Med. Clin. N. Am. 2012;96:203–221. doi: 10.1016/j.mcna.2012.01.005. [PubMed] [CrossRef] [Google Scholar]
- Daher R., Yazbeck T., Jaoude J.B., Abboud B. Consequences of Dysthyroidism on the Digestive Tract and Viscera. WJG. 2009;15:2834. doi: 10.3748/wjg.15.2834. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Zhou L., Li X., Ahmed A., Wu D., Liu L., Qiu J., Yan Y., Jin M., Xin Y. Gut Microbe Analysis Between Hyperthyroid and Healthy Individuals. Curr. Microbiol. 2014;69:675–680. doi: 10.1007/s00284-014-0640-6. [PubMed] [CrossRef] [Google Scholar]
- Penhale W.J., Young P.R. The Influence of the Normal Microbial Flora on the Susceptibility of Rats to Experimental Autoimmune Thyroiditis. Clin. Exp. Immunol. 1988;72:288–292. [PMC free article] [PubMed] [Google Scholar]
- Ihnatowicz P., Drywień M., Wątor P., Wojsiat J. The Importance of Nutritional Factors and Dietary Management of Hashimoto’s Thyroiditis. Ann. Agric. Environ. Med. 2020;27:184–193. doi: 10.26444/aaem/112331. [PubMed] [CrossRef] [Google Scholar]
- Barboza J.L., Okun M.S., Moshiree B. The Treatment of Gastroparesis, Constipation and Small Intestinal Bacterial Overgrowth Syndrome in Patients with Parkinson’s Disease. Expert Opin. Pharmacother. 2015;16:2449–2464. doi: 10.1517/14656566.2015.1086747. [PubMed] [CrossRef] [Google Scholar]
- DiBaise J.K., Crowell M.D., Driver-Dunckley E., Mehta S.H., Hoffman-Snyder C., Lin T., Adler C.H. Weight Loss in Parkinson’s Disease: No Evidence for Role of Small Intestinal Bacterial Overgrowth. J. Park. Dis. 2018:571–581. doi: 10.3233/JPD-181386. [PubMed] [CrossRef] [Google Scholar]
- Fasano A., Bove F., Gabrielli M., Petracca M., Zocco M.A., Ragazzoni E., Barbaro F., Piano C., Fortuna S., Tortora A., et al. The Role of Small Intestinal Bacterial Overgrowth in Parkinson’s Disease: Sibo in Parkinson’s Disease. Mov. Disord. 2013;28:1241–1249. doi: 10.1002/mds.25522. [PubMed] [CrossRef] [Google Scholar]
- van Kessel S.P., El Aidy S. Contributions of Gut Bacteria and Diet to Drug Pharmacokinetics in the Treatment of Parkinson’s Disease. Front. Neurol. 2019;10:1087. doi: 10.3389/fneur.2019.01087. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Valles-Colomer M., Falony G., Darzi Y., Tigchelaar E.F., Wang J., Tito R.Y., Schiweck C., Kurilshikov A., Joossens M., Wijmenga C., et al. The Neuroactive Potential of the Human Gut Microbiota in Quality of Life and Depression. Nat. Microbiol. 2019;4:623–632. doi: 10.1038/s41564-018-0337-x. [PubMed] [CrossRef] [Google Scholar]
- Geier D.A., Kern J.K., Geier M.R. A Comparison of the Autism Treatment Evaluation Checklist (ATEC) and the Childhood Autism Rating Scale (CARS) for the Quantitative Evaluation of Autism. J. Ment. Health Res. Intellect. Disabil. 2013;6:255–267. doi: 10.1080/19315864.2012.681340. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Cryan J.F., Dinan T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012;13:701–712. doi: 10.1038/nrn3346. [PubMed] [CrossRef] [Google Scholar]
- Finegold S.M., Summanen P.H., Downes J., Corbett K., Komoriya T. Detection of Clostridium Perfringens Toxin Genes in the Gut Microbiota of Autistic Children. Anaerobe. 2017;45:133–137. doi: 10.1016/j.anaerobe.2017.02.008. [PubMed] [CrossRef] [Google Scholar]
- Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., Youn E., Summanen P.H., Granpeesheh D., Dixon D., et al. Pyrosequencing Study of Fecal Microflora of Autistic and Control Children. Anaerobe. 2010;16:444–453. doi: 10.1016/j.anaerobe.2010.06.008. [PubMed] [CrossRef] [Google Scholar]
- Macfabe D., Cain D., Rodriguezcapote K., Franklin A., Hoffman J., Boon F., Taylor A., Kavaliers M., Ossenkopp K. Neurobiological Effects of Intraventricular Propionic Acid in Rats: Possible Role of Short Chain Fatty Acids on the Pathogenesis and Characteristics of Autism Spectrum Disorders. Behav. Brain Res. 2007;176:149–169. doi: 10.1016/j.bbr.2006.07.025. [PubMed] [CrossRef] [Google Scholar]
- Zhang Y., Hodgson N.W., Trivedi M.S., Abdolmaleky H.M., Fournier M., Cuenod M., Do K.Q., Deth R.C. Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia. PLoS ONE. 2016;11:e0146797. doi: 10.1371/journal.pone.0146797. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Khalighi A.R., Khalighi M.R., Behdani R., Jamali J., Khosravi A., Kouhestani S., Radmanesh H., Esmaeelzadeh S., Khalighi N. Evaluating the Efficacy of Probiotic on Treatment in Patients with Small Intestinal Bacterial Overgrowth (SIBO)—A Pilot Study. Indian J. Med. Res. 2014;140:604–608. [PMC free article] [PubMed] [Google Scholar]
- Adams J.B., Romdalvik J., Levine K.E., Hu L.-W. Mercury in First-Cut Baby Hair of Children with Autism versus Typically-Developing Children. Toxicol. Environ. Chem. 2008;90:739–753. doi: 10.1080/02772240701699294. [CrossRef] [Google Scholar]
- Petersen C. D-Lactic Acidosis. Nutr. Clin. Pract. 2005;20:634–645. doi: 10.1177/0115426505020006634. [PubMed] [CrossRef] [Google Scholar]
- Steen V.D., Medsger T.A. Severe Organ Involvement in Systemic Sclerosis with Diffuse Scleroderma. Arthritis Rheum. 2000;43:2437–2444. doi: 10.1002/1529-0131(200011)43:11<2437::AID-ANR10>3.0.CO;2-U. [PubMed] [CrossRef] [Google Scholar]
- Gyger G., Baron M. Gastrointestinal Manifestations of Scleroderma: Recent Progress in Evaluation, Pathogenesis, and Management. Curr. Rheumatol. Rep. 2012;14:22–29. doi: 10.1007/s11926-011-0217-3. [PubMed] [CrossRef] [Google Scholar]
- Sjogren R.W. Gastrointestinal Motility Disorders in Scleroderma. Arthritis Rheum. 1994;37:1265–1282. doi: 10.1002/art.1780370902. [PubMed] [CrossRef] [Google Scholar]
- Bharadwaj S., Tandon P., Gohel T., Corrigan M.L., Coughlin K.L., Shatnawei A., Chatterjee S., Kirby D.F. Gastrointestinal Manifestations, Malnutrition, and Role of Enteral and Parenteral Nutrition in Patients with Scleroderma. J. Clin. Gastroenterol. 2015;49:559–564. doi: 10.1097/MCG.0000000000000334. [PubMed] [CrossRef] [Google Scholar]
- Tian X.-P. Gastrointestinal Complications of Systemic Sclerosis. WJG. 2013;19:7062. doi: 10.3748/wjg.v19.i41.7062. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Stellaard F., Sauerbruch T., Luderschmidt C.H., Leisner B., Paumgartner G. Intestinal Involvement in Progressive Systemic Sclerosis Detected by Increased Unconjugated Serum Bile Acids. Gut. 1987;28:446–450. doi: 10.1136/gut.28.4.446. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Maconi G. Diagnosis of Symptomatic Uncomplicated Diverticular Disease and the Role of Rifaximin in Management. Acta Biomed. 2017;88:25–32. doi: 10.23750/abm.v88i1.6360. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Pittman N., Rawn S.M., Wang M., Masetto A., Beattie K.A., Larché M. Treatment of Small Intestinal Bacterial Overgrowth in Systemic Sclerosis: A Systematic Review. Rheumatology. 2018;57:1802–1811. doi: 10.1093/rheumatology/key175. [PubMed] [CrossRef] [Google Scholar]
- Rebora A. The Management of Rosacea. Am. J. Clin. Dermatol. 2002;3:489–496. doi: 10.2165/00128071-200203070-00005. [PubMed] [CrossRef] [Google Scholar]
- Marks R., Clark M.L., Beard R.J., Kwok M., Robertson W.B. Gastrointestinal Observations in Rosacea. Lancet. 1967;289:739–743. doi: 10.1016/S0140-6736(67)91361-X. [PubMed] [CrossRef] [Google Scholar]
- Rukavina Mikusic N.L., Kouyoumdzian N.M., Choi M.R. Gut Microbiota and Chronic Kidney Disease: Evidences and Mechanisms That Mediate a New Communication in the Gastrointestinal-Renal Axis. Pflugers Arch-Eur. J. Physiol. 2020;472:303–320. doi: 10.1007/s00424-020-02352-x. [PubMed] [CrossRef] [Google Scholar]
- Vaziri N.D., Dure-Smith B., Miller R., Mirahmadi M.K. Pathology of Gastrointestinal Tract in Chronic Hemodialysis Patients: An Autopsy Study of 78 Cases. Am. J. Gastroenterol. 1985;80:608–611. [PubMed] [Google Scholar]
- Barrios C., Beaumont M., Pallister T., Villar J., Goodrich J.K., Clark A., Pascual J., Ley R.E., Spector T.D., Bell J.T., et al. Gut-Microbiota-Metabolite Axis in Early Renal Function Decline. PLoS ONE. 2015;10:e0134311. doi: 10.1371/journal.pone.0134311. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Nallu A., Sharma S., Ramezani A., Muralidharan J., Raj D. Gut Microbiome in Chronic Kidney Disease: Challenges and Opportunities. Transl. Res. 2017;179:24–37. doi: 10.1016/j.trsl.2016.04.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Satoh M., Hayashi H., Watanabe M., Ueda K., Yamato H., Yoshioka T., Motojima M. Uremic Toxins Overload Accelerates Renal Damage in a Rat Model of Chronic Renal Failure. Nephron. Exp. Nephrol. 2003;95:e111–e118. doi: 10.1159/000074327. [PubMed] [CrossRef] [Google Scholar]
- Jang H.R., Gandolfo M.T., Ko G.J., Satpute S., Racusen L., Rabb H. Early Exposure to Germs Modifies Kidney Damage and Inflammation after Experimental Ischemia-Reperfusion Injury. Am. J. Physiol.-Ren. Physiol. 2009;297:F1457–F1465. doi: 10.1152/ajprenal.90769.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Thadhani R., Pascual M., Bonventre J.V. Acute Renal Failure. N. Engl. J. Med. 1996;334:1448–1460. doi: 10.1056/NEJM199605303342207. [PubMed] [CrossRef] [Google Scholar]
- Yang J., Kim C.J., Go Y.S., Lee H.Y., Kim M.-G., Oh S.W., Cho W.Y., Im S.-H., Jo S.K. Intestinal Microbiota Control Acute Kidney Injury Severity by Immune Modulation. Kidney Int. 2020;98:932–946. doi: 10.1016/j.kint.2020.04.048. [PubMed] [CrossRef] [Google Scholar]
- Andrade-Oliveira V., Amano M.T., Correa-Costa M., Castoldi A., Felizardo R.J.F., de Almeida D.C., Bassi E.J., Moraes-Vieira P.M., Hiyane M.I., Rodas A.C.D., et al. Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. JASN. 2015;26:1877–1888. doi: 10.1681/ASN.2014030288. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Mahmoodpoor F., Rahbar Saadat Y., Barzegari A., Ardalan M., Zununi Vahed S. The Impact of Gut Microbiota on Kidney Function and Pathogenesis. Biomed. Pharmacother. 2017;93:412–419. doi: 10.1016/j.biopha.2017.06.066. [PubMed] [CrossRef] [Google Scholar]
- Kiryluk K., Li Y., Scolari F., Sanna-Cherchi S., Choi M., Verbitsky M., Fasel D., Lata S., Prakash S., Shapiro S., et al. Discovery of New Risk Loci for IgA Nephropathy Implicates Genes Involved in Immunity against Intestinal Pathogens. Nat. Genet. 2014;46:1187–1196. doi: 10.1038/ng.3118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Yang T., Santisteban M.M., Rodriguez V., Li E., Ahmari N., Carvajal J.M., Zadeh M., Gong M., Qi Y., Zubcevic J., et al. Gut Dysbiosis Is Linked to Hypertension. Hypertension. 2015;65:1331–1340. doi: 10.1161/HYPERTENSIONAHA.115.05315. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Durgan D.J., Ganesh B.P., Cope J.L., Ajami N.J., Phillips S.C., Petrosino J.F., Hollister E.B., Bryan R.M. Role of the Gut Microbiome in Obstructive Sleep Apnea–Induced Hypertension. Hypertension. 2016;67:469–474. doi: 10.1161/HYPERTENSIONAHA.115.06672. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Stern J.M., Moazami S., Qiu Y., Kurland I., Chen Z., Agalliu I., Burk R., Davies K.P. Evidence for a Distinct Gut Microbiome in Kidney Stone Formers Compared to Non-Stone Formers. Urolithiasis. 2016;44:399–407. doi: 10.1007/s00240-016-0882-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
ANNE PEMBERTON
1. Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells. Int J Mol Sci 2020 Dec; 21(23): 9254. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731431.
2. Faecal Calprotectin. Clin Biochem Rev. 2018, Aug; 39(3): 77–90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370282/#:~:text=Faecal%20calprotectin%20is%20a%20very,irritable%20bowel%20syndrome%20(IBS).
3. The Golden Fountain – Is urine the miracle drug no one told you about? Pan Afr Med J 2010, 5: 13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032615.
4. https://globalhealing.com/products/why-everyone-needs-a-parasite-cleanse.
5. https://urotherapyresearch.com.
6. http://klinghardtinstitute.com/wp-content/uploads/2015/06/Explore-5-Levels-Of-Healing.pdf.
7. https://www.who.int/news-room/fact-sheets/detail/schistosomiasis. 8. 8. Biology: parasaties – schistosomiasis: https://www.cdc.gov/parasites/schistosomiasis/biology.html.
9. The human snail transmission environment shapes long term schistosomiasis control outcomes: Implications for improving the accuracy of predictive modeling. PloS Negl Trop Dis. 2018, May;12(5): https://pubmed.ncbi.nlm.nih.gov/29782500.
10. Schistosomiasis: Life Cycle, Diagnosis, and Control. Curr Ther Res Clin Exp 2019; 91: 5–9: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658823.
11. Resources for health professionals: parasites – shistosomiasis: https://www.cdc.gov/parasites/schistosomiasis/health_professionals/index.html.
12. Urinary bladder Schistosoma haematobium-related squamous cell carcinoma: a report of two fatal cases and literature review. Trop Dis Travel Med Vaccines 2022 Feb 15;8(1):3: https://pubmed.ncbi.nlm.nih.gov/35164874.
13. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 21-2001. A 31-year-old man with an apparent seizure and a mass in the right parietal lobe. N Engl J Med. 2001, 345(2):126–131. https://pubmed.ncbi.nlm.nih.gov/11450661.
14. [1] Healing Developmental Trauma: How Early Trauma Affects Self-Regulation, Self-Image, and the Capacity for Relationship, by Laurence Heller, PhD and Aline LaPierre, PsyD. https://drlaurenceheller.com.
15. https://davidrouter.com.
16. The Secret Language of Your Body: The Essential Guide to Health and Wellness, by Inna Segal: https://www.innasegal.com.
May 2023
EDITOR’S NOTE
Hidden diversity: comparative functional morphology of humans and other species. PeerJ, 2023; 11: e15148 DOI: 10.7717/peerj.15148.
Dr Roger Williams: University of Texas archive at http://bioinst.cm.utexas.edu/williams.
Guinea pigs: “Individuality in Vitamin C needs” (Roger Williams with Gary Deason). Paper read before the National Academy of Sciences, April 26, 1967: https://www.pnas.org/doi/pdf/10.1073/pnas.57.6.1638.
John Neustadt, ND, and Steve Pieczenik, MD, PhD, review: Biochemical Individuality, Integrative Medicine 2007, 6:3, Jun/Jul: https://nbihealth.com/wp-content/uploads/2017/10/Biochemical-Individuality.pdf.
NEWS
Dietary magnesium intake is related to larger brain volumes and lower white matter lesions with notable sex differences. European Journal of Nutrition 2023, DOI: 10.1007/s00394-023-03123-x.
Combined metabolic activators improve cognitive functions in Alzheimer’s disease patients: a randomised, double-blinded, placebo-controlled phase-II trial. Transl Neurodegener 2023, 12, 4: https://translationalneurodegeneration.biomedcentral.com/articles/10.1186/s40035-023-00336-2.
Combined metabolic activators improve metabolic functions in the animal models of neurodegenerative diseases. Life Sciences 2023, Feb, 314: 121325. https://www.sciencedirect.com/science/article/pii/S0024320522010256. Combined metabolic activators therapy ameliorates liver fat in nonalcoholic fatty liver disease patients. Molecular Systems Biology 2021,17:e10459, https://www.embopress.org/doi/full/10.15252/msb.202110459.
Combined Metabolic Activators Accelerates Recovery in Mild-to-Moderate COVID-19. Adv Sci (Weinh) 2021, 8(17):e2101222. https://pubmed.ncbi.nlm.nih.gov/34180141.
Selenium as a predictor of metabolic syndrome in middle age women. Aging (Albany NY) 2023, Mar 21,15(6):1734-1747. https://pubmed.ncbi.nlm.nih.gov/36947700.
Dr SARAH MYHILL
[2] ‘The GMC: expediency before principle’ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539824/
[3] https://en.wikipedia.org/wiki/General_Medical_Council
[4] ‘Good doctors: safer patients—the Chief Medical Officer’s prescription for regulating doctors’
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557883/
[5] ‘Troubled heart’ https://www.theguardian.com/society/2005/mar/23/NHS.freedomofinformation
[6] “Medical expert witnesses ‘should not scapegoat doctors’ “:
[7] “Covid-19: High Court overturns decision to ban GP from posting views on pandemic on social media” , https://www.bmj.com/content/375/bmj.n3033
[8] Chronic fatigue syndrome and mitochondrial dysfunction: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680051/
[9] Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403556/
[10] Targeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) – a clinical audit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515971/
[11] https://www.drmyhill.co.uk
[12] “Gosport hospital: Dr Jane Barton implicated in deaths of 656 patients”: https://www.telegraph.co.uk/news/2018/06/20/gosport-hospital-inquiry-families-get-answers-hundreds-painkiller/
[13] “Other points raised by the GMC’s handling of its investigations”:
https://www.gosportpanel.independent.gov.uk/panel-report/part-two/chapter-6/page-19/
[15] https://www.nhs-corona-doctors-on-the-frontline.com
[16] COVID-19 Mortality Risk Correlates Inversely with Vitamin D3 Status, and a Mortality Rate Close to Zero Could Theoretically Be Achieved at 50ng/mL 25(OH)D3: Results of a Systematic Review and Meta-Analysis: https://pubmed.ncbi.nlm.nih.gov/34684596/
[17] Efficacy of “Essential Iodine Drops” against Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2): https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254341
[19] Ivermectin for Prevention and Treatment of COVID-19 Infection: A Systematic Review, Meta-analysis, and Trial Sequential Analysis to Inform Clinical Guidelines: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248252/
[20] Review of the Emerging Evidence Demonstrating the Efficacy of Ivermectin in the Prophylaxis and Treatment of COVID-19: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088823/
[21] A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709596/
[22] https://ivmmeta.com ‘Ivermectin for COVID-19: real-time meta-analysis of 95studies’
[23] Effectiveness of personal protective measures in reducing pandemic influenza transmission: A systematic review and meta-analysis: https://www.sciencedirect.com/science/article/pii/S1755436516300858.
[24] “Are Face Masks Effective? The Evidence”, Swiss Policy Research: https://swprs.org/face-masks-evidence.
[26] https://www.ukmedfreedom.org.
DIABETES
Evidence-based European recommendations for the dietary management of diabetes. Diabetologia 2023, Apr 17: https://doi.org/10.1007/s00125-023-05894-8.
Incident type 2 diabetes attributable to suboptimal diet in 184 countries.
Nature Med 2023, Apr;29(4):982-995. https://pubmed.ncbi.nlm.nih.gov/37069363.
“Low-carb diets position statement for professionals (May 2021)”: https://www.diabetes.org.uk/professionals/position-statements-reports/food-nutrition-lifestyle/low-carb-diets-for-people-with-diabetes.
Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 2017, DOI: https://doi.org/10.1016/S0140-6736(17)33102-1.
Dr Sarah Myhill: “Diabetes – how to prevent the complications”. https://www.drmyhill.co.uk/wiki/Diabetes_-_how_to_prevent_the_complications.
Roy Roberston: https://www.australianparadox.com/pdf/Letter-Health-Minister-n-Secretary-Feb23.pdf.
Virta: Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at One Year: An Open Label, Non-Randomized, Controlled Study. Diabetes Ther 2018: https://pubmed.ncbi.nlm.nih.gov/29417495.
Type 2 Diabetes Prevention Focused on Normalization of Glycemia: A Two-Year Pilot Study. Nutrients 2021, 13(3):749. https://doi.org/10.3390/nu13030749.
Insights from a general practice service evaluation supporting a lower carbohydrate diet in patients with type 2 diabetes mellitus and prediabetes: a secondary analysis of routine clinic data including HbA1c, weight and prescribing over 6 years. BMJ Nutrition, Prevention & Health 2021, 3:doi: 10.1136/bmjnph-2020-000072: https://nutrition.bmj.com/content/3/2/285.info.
INFLAMMATION
Obesity defined molecular endotypes in the synovium of patients with osteoarthritis provides a rationale for therapeutic targeting of fibroblast subsets. Clin Transl Med 2023, Apr 3, Vol13: 4. https://onlinelibrary.wiley.com/doi/10.1002/ctm2.1232.
SARS-CoV-2 infection induces DNA damage, through CHK1 degradation and impaired 53BP1 recruitment, and cellular senescence. Nat Cell Biol 2023,, 25, 550–564: https://www.nature.com/articles/s41556-023-01096-x.
The influence of curcumin additives on the viability of probiotic bacteria, antibacterial activity against pathogenic microorganisms and quality indicators of low-fat yogurt. Frontiers in Nutrition 2023, Apr 3: https://www.frontiersin.org/articles/10.3389/fnut.2023.1118752/full. Consumption of dairy product and its association with total and cause specific mortality – a population-based cohort study and meta-analysis. Clinical Nutrition 2019, Dec;38(6):2833-2845. https://pubmed.ncbi.nlm.nih.gov/30595374.
Age-dependent Pdgfrβ signaling drives adipocyte progenitor dysfunction to alter the beige adipogenic niche in male mice. Nat Commun 2023, 14, 1806: https://www.nature.com/articles/s41467-023-37386-z.
RESEARCH UPDATE
Aryl Hydrocarbon Receptor Activation Coordinates Mouse Small Intestinal Epithelial Cell Programming. Lab Invest 2023, Feb;103(2):100012. https://pubmed.ncbi.nlm.nih.gov/37039146.
Childhood adversity and risk of type 2 diabetes in early adulthood: results from a population-wide cohort study of 1.2 million individuals. Diabetologia 2023, Apr 20: https://pubmed.ncbi.nlm.nih.gov/37076640, online ahead of print.
US study: “Metabolic, behavioural and social determinants of youth-onset T2D”: https://grants.nih.gov/grants/guide/rfa-files/rfa-dk-21-002.html.
Medication Deprescribing Among Patients With Type 2 Diabetes: A Qualitative Case Series of Lifestyle Medicine Practitioner Protocols. Clinical Diabetes 2023, Apr 18: doi 10.2337/cd22-0009.
Intermittent fasting plus early time-restricted eating versus calorie restriction and standard care in adults at risk of type 2 diabetes: a randomized controlled trial. Nat Med 2023, 29, 963–972: https://doi.org/10.1038/s41591-023-02287-7.
Effects of Tai Chi Chuan on Cognitive Function in Adults 60 Years or Older With Type 2 Diabetes and Mild Cognitive Impairment in China: A Randomized Clinical Trial. JAMA Netw Open 2023, 6(4):e237004. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2803247.
A randomized pilot trial assessing the reduction of gout episodes in hyperuricemic patients by oral administration of Ligilactobacillus salivarius CECT 30632, a strain with the ability to degrade purines. Front. Microbiol 2023, 14: https://www.frontiersin.org/articles/10.3389/fmicb.2023.1111652/full.
Cranberries for preventing urinary tract infections. Cochrane Database of Systematic Reviews 2023, (4). DOI: 10.1002/14651858.CD001321.pub6.
Folate-dependent hypermobility syndrome: A proposed mechanism and diagnosis. Heliyon 2023, 9 (4): e15387. https://www.cell.com/heliyon/fulltext/S2405-8440(23)02594-X.
Hidden diversity: comparative functional morphology of humans and other species. PeerJ, 2023; 11: e15148 DOI: 10.7717/peerj.15148.
“Digestive Organs Vary Widely Between People, Study Finds”, by Dennis Thompson, April 24, 2023 (HealthDay News): https://www.medicinenet.com/digestive_organs_vary_widely_between_people/news.htm.
Nutrient-sensing AgRP neurons relay control of liver autophagy during energy deprivation. Cell Metab 2023, Apr 12; S1550-4131(23)00124-9: https://pubmed.ncbi.nlm.nih.gov/37075752.
Mitoquinone Mesylate and Mitochondrial DNA in End Organs in Humanized Mouse Model of Chronic Treated Human Immunodeficiency Virus Infection. The Journal of Infectious Diseases 2023, Mar 24, jiad044: https://academic.oup.com/jid/advance-article-abstract/doi/10.1093/infdis/jiad044/7079578.
April 2023
WELCOME
Success Rates in Psychiatry. JAMA Psychiatry 2023, online March 22: https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2802547.
“JAMA Psychiatry: No Evidence that Psychiatric Treatments Produce ‘Successful Outcomes’”, by Peter Simons: https://www.madinamerica.com/2023/03/does-psychiatry-improve-outcomes-we-dont-know-according-to-jama-psychiatry.
Psychological distress, self-harm and attempted suicide in UK 17-year olds: prevalence and sociodemographic inequalities. The British Journal of Psychiatry 2021, 219(2), 437-439: https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/psychological-distress-selfharm-and-attempted-suicide-in-uk-17year-olds-prevalence-and-sociodemographic-inequalities/01B1D33B67CD8D00A81EA4C0E6CD1BE8.
Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer’s Disease and MCI: A Review. Int. J. Mol. Sci. 2023, 24, 1659. https://doi.org/10.3390/ijms24021659.
The Key Role of Mitochondrial Function in Health and Disease. Antioxidants 2023, 12(4), 782: https://www.mdpi.com/2076-3921/12/4/782.
NEWS
Long-term gastrointestinal outcomes of COVID-19. Nature Communications 2023. March 7: https://www.nature.com/articles/s41467-023-36223-7.
Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer’s Disease and MCI: A Review. Int. J. Mol. Sci. 2023, 24, 1659. https://doi.org/10.3390/ijms24021659.
Walnuts and Vegetable Oils Containing Oleic Acid Differentially Affect the Gut Microbiota and Associations with Cardiovascular Risk Factors: Follow-up of a Randomized, Controlled, Feeding Trial in Adults at Risk for Cardiovascular Disease. The Journal of Nutrition 2019; DOI: 10.1093/jn/nxz289.
Dr JAMES GREENBLATT
Considering the methodological limitations in the evidence base of antidepressants for depression: a reanalysis of a network meta-analysis. BMJ Open 2019;9(6):e024886. Jun 27: https://bmjopen.bmj.com/content/9/6/e024886.
Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain Behav Immun 2022;100:233-241. https://www.sciencedirect.com/science/article/abs/pii/S0889159121006267?dgcid=api_sd_search-api-endpoint.
Evidences of a New Psychobiotic Formulation on Body Composition and Anxiety. Mediators Inflamm 2017;2017:5650627. https://www.hindawi.com/journals/mi/2017/5650627.
Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), an abnormal phenylalanine metabolite of Clostridia spp. in the gastrointestinal tract, in urine samples from patients with autism and schizophrenia. Nutr Neurosci 2010;13(3):135-143: https://www.tandfonline.com/doi/abs/10.1179/147683010X12611460763968.
Urinary 3-(3-Hydroxyphenyl)-3-hydroxypropionic Acid, 3-Hydroxyphenylacetic Acid, and 3-Hydroxyhippuric Acid Are Elevated in Children with Autism Spectrum Disorders. Biomed Res Int 2016, 9485412. https://pubmed.ncbi.nlm.nih.gov/27123458.
Urinary organic acids spectra in children with altered gut microbiota composition and autistic spectrum disorder. Nord J Psychiatry 2022;76(7):523-529. https://pubmed.ncbi.nlm.nih.gov/34935590.
Investigation of the relation between anaerobic bacteria genus clostridium and late-onset autism etiology in children. J Immunoassay Immunochem 2014;35(1):101-109. https://pubmed.ncbi.nlm.nih.gov/24063620.
Action of m-tyrosine in experimental models: evidence for possible antiparkinsonian activity. Eur J Pharmacol 1973;21(2):230-237. https://www.sciencedirect.com/science/article/abs/pii/0014299973902318
The role of catecholamines, 5-hydroxytryptamine and m-tyramine in the behavioural effects of m-tyrosine in the rat. Eur J Pharmacol 1982;84(3-4):139-149. https://pubmed.ncbi.nlm.nih.gov/7173317.
Vancomycin Taper and Pulse Regimen With Careful Follow-up for Patients With Recurrent Clostridium difficile Infection. Clin Infect Dis 2017;65(8):1396-1399. https://pubmed.ncbi.nlm.nih.gov/28591789.
Research panel
1. Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nature Microbiol 2023, March 13: https://doi.org/10.1038/s41564-023-01337-7.
2. Bile Salt Hydrolase Activity of Probiotics and their Role in Hypolipidemia. Journal of Biology and Todays World 2023, Jan, 12: 1: https://www.iomcworld.org/articles/bile-salt-hydrolase-activity-of-probiotics-and-their-role–in-hypolipidemia.pdf.
CBD
Inhibition of Nicotine Metabolism by Cannabidiol (CBD) and 7-Hydroxycannabidiol (7-OH-CBD). Chem. Res. Toxicol 2023, 36, 2, 177-187, Jan 10: https://doi.org/10.1021/acs.chemrestox.2c00259.
ALLERGIES
Audebert, C., Even, G., Cian, A., Blastocystis Investigation Group, Loywick, A., Merlin, S., Viscogliosi, E., & Chabé, M. (2016). Colonisation with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Scientific Reports, 6. https://doi. org/10.1038/srep25255
- Deng, L., Wojciech, L., Gascoigne, N. R. J., Peng, G., & Tan, K. S. W. (2021). New insights into the interactions between Blastocystis, the gut microbiota, and host immunity. PLOS Pathogens, 17(2). https://doi.org/10.1371/journal.ppat.1009253
- Nemati, S., Zali, M. R., Johnson, P., Mirjalali, H., & Karanis, P. (2021). Molecular prevalence and subtype distribution of Blastocystis sp. In Asia and in Australia. Journal of Water and Health, 19(5), 687-704. https://doi.org/10.2166/wh.2021.011
- Oliveira-Arbex, A. P., David, É. B., Cacciò, S. M., de Fonseca, C. R. B., Martin, J. G., Kurokawa, C. S., Tosini, F., Souza Neto, J. A., & Guimarães, S. (2021). Prevalence and genetic characterisation of Dientamoeba fragilis in asymptomatic children attending daycare centres. Revista do Instituto de Medicina Tropical de Sao Paulo, 63. https://doi.org/10.1590/S1678-9946202163039
- Scanlan, P. D., Stensvold, C. R., Rajilić-Stojanovic, M., Heilig, H. G. H. J., De Vos, W. M., O’Toole, P. W., & Cotter, P. D. (2014). The microbial eukaryote Blastocystis is a prevlent and diverse member of the healthy human gut microbiota. FEMS Microbiology Ecology, 90(1), 326-330. https://doi. org/10.1111/1574-6941.12396
- Beiromvand, M., Hashemi, S. J., Arjmand, R., Sadjadei, N., & Hardanipasand, L. (2017). Comparative prevalence of Blastocystis in patients with irritable bowel syndrome and health individuals: a case control study. Jundishapur Journal of Microbiology, 10(6).
- Krogsgaard, L. R., O’Brien Andersen, L., Johannesen, T, B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clinical and Translational Gastroenterology, 9(6), 161. https://doi.org/10.1038/s41424-018-0027-2
- Tito, R. Y., Chaffron, S., Caenepeel, C., Lima-Mendez, G., Wang, J., Vieira-Silva, S., Falony, G., Hildebrand, F., Darzi, Y., Rymenans, L., Verspecht, C., Bork, P., Vermeire, S., Joossens, M., & Raes, J. (2019). Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut, 68(7). http://dx.doi.org/10.1136/gutjnl-2018-316106
- Jiménez, P. A., Jaimes, J. E., & Ramírez, J. D. (2019). A summary of Blastocystis subtypes in North and South America. Parasites and Vectors, 12(1), 1-19. https://doi.org/10.1186/s13071-019-3641-2
- Feranmi, F. (2022). Blastocystis subtype 3 linked to gut microbiota stability. The Lancet Microbe, 3(8). https://doi.org/10.1016/S2666- 5247(22)00196-3
- Coyle, C. M., Varughese, J., Weiss, & Tanositz, H. B. (2012). Blastocystis: to treat or not to treat. Clinical Infectious Diseases, 54(1), 105-110. https:// doi.org/10.1093/cid/cir810
- Chandramathi, S., Suresh, K., Sivanandam, S., & Kuppusamy, U. R. (2014). Stress exacerbates infectivity and pathogenicity of Blastocystic homnis: in vitro and in vivo evidences. PLoS One, 9(5), https://doi.org/10.1371/journal.pone.0094567
AGA Clinical Practice Update on Alpha-Gal Syndrome for the GI Clinician: Commentary. Clinical Gastroenterology and Hepatology 2023;21:891-896. https://www.cghjournal.org/article/S1542-3565(23)00040-X/fulltext#articleInformation.
Co-sensitization between legumes is frequently seen, but variable and not always clinically relevant. Front. Allergy 2023, 16 March,
Sec. Food Allergy, Vol 4: https://doi.org/10.3389/falgy.2023.1115022.
Gluten-Free Products: Do We Need to Update Our Knowledge? Foods 2022; 11(23):3839. https://www.mdpi.com/2304-8158/11/23/3839.
NEW RELEASES
Short-term Outcomes of Saffron Supplementation in Patients with Age-related Macular Degeneration: A Double-blind, Placebo-controlled, Randomized Trial. Med Hypothesis Discov Innov Ophthalmol 2016, Spring; 5(1): 32–38. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342880.
Saffron therapy for the treatment of mild/moderate age-related macular degeneration: a randomised clinical trial. Graefes Arch Clin Exp Ophthalmol 2019, 257, 31-40: https://link.springer.com/article/10.1007/s00417-018-4163-x#citeas.
High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis. Amino Acids 2018 Oct;50(10):1357-1365. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153947.
Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 2014, Jun 18;20:1003-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072585.
Collagen loss with age: https://www.hsph.harvard.edu/nutritionsource/collagen.
Type III collagen modulates fracture callus bone formation and early remodeling. J Orthop Res 2015, May;33(5):675-84. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406871.
GOPO®
A powder made from seeds and shells of a rose-hip subspecies (Rosa canina) reduces symptoms of knee and hip osteoarthritis: a randomized, double-blind, placebo-controlled clinical trial. Scandinavian Rheumatology 2005, 34, 4: 302-8.
The Effects of a Standardized Herbal Remedy Made from a Subtype of Rosa canina in Patients with Osteoarthritis: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Current Ther Res 2003, 64,1: 21-31. https://www.sciencedirect.com/science/article/abs/pii/S0011393X03000043.
Anti-inflammatory and chondro-protective effects of rose-hip powder and its constituent galactolipids GOPO. Poster presentation by Schwager J, Richard N, Wolfram S at the World Congress of Osteoarthritis (OARSI) 2008.
The effect of a glycoside of mono and diglycerol (GOPO®) supplementation on passive knee joint forces and subjective assessment of pain in a non-arthritic population. Brit J Sports Medicine 2013, 47, e4: https://bjsm.bmj.com/content/47/17/e4.36.
A herbal remedy, Hyben Vital (stand. Powder of a subspecies of Rosa canina fruits), reduces pain and improves general wellbeing in patients with OA – a double-blind, placebo-controlled, randomised trial. Phytomedicine 2004, Jul;11(5):383-91. https://pubmed.ncbi.nlm.nih.gov/15330493.
Does the hip powder of Rose canina (rosehip) reduce pain in osteoarthritis patients? – a meta-analysis of randomised controlled trials. Osteoarthritis Cartilage 2008. In: Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]. York (UK): Centre for Reviews and Dissemination (UK); 1995-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK75292.
Anti-inflammatory and chondro-protective effects of rosehip powder and its constituent galactolipids GOPO. Poster presentation at the World Congress of Osteoarthritis (OARSI) 2008: https://rosehipvital.com.hk/wp-content/uploads/2018/05/10-24-Sept-2008-Anti-Inflammatory-and-Chondro-protective-effects-of-Rose-hip-powder-and-its-consitituent-galactolipid-GOPO.pdf.
RESEARCH
Dectin-1 signaling on colonic γδ T cells promotes psychosocial stress responses. Nat Immunol 2023, March 20: https://www.nature.com/articles/s41590-023-01447-8.
Using source-associated mobile genetic elements to identify zoonotic extraintestinal E. coli infections. One Health 2023, online 28 February: https://www.sciencedirect.com/science/article/pii/S2352771423000381.
Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut 2022;71:230-232: https://gut.bmj.com/content/71/1/230.
Association between blood N-3 fatty acid levels and the risk of coronavirus disease 2019 in the UK Biobank. Am J Clin Nutr 2023, Feb;117(2):357-363: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972865.
THE EFFECTS OF AGEING ON THE MICROBIOME – PROMOTIONAL FEATURE
- López-Otín, C et al. (2013). ‘The Hallmarks of Aging’. Cell, Volume 153, Issue 6, P1194-1217, June 06. https://doi.org/10.1016/j.cell.2013.05.039
- Ferrucci, L et al. (2019). ‘Measuring biological aging in humans: A quest’. Aging Cell, Volume 19, Issue 2, June 20. https://doi.org/10.1111/acel.13080
- Nagpal, R et al. (2018). ‘Gut microbiome and aging: Physiological and mechanistic insights’. Nutrition and Healthy Aging, Volume 4, No. 4, P267-285 DOI: 10.3233/NHA-170030
- Odamaki, T., Kato, K., Sugahara, H. et al. (2016). ‘Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study’. BMC Microbial, 16, 90 (2016). https://doi.org/10.1186/s12866-016-0708-5
- Saraswati, S., & Sitaraman, R. (2015). ‘Aging and the human gut microbiota-from correlation to causality’. Frontiers in Microbiology, Volume 5, Issue 764. https://doi.org/10.3389/fmicb.2014.00764
- Santoro, A. et al. (2020). ‘Microbiomes other than the gut: inflammaging and age-related diseases’. Seminars in Immunopathology, Volume 42, P589–605. https://doi.org/10.1007/s00281-020-00814-z
- Barrientos-Durán, A et al. (2020). ‘Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis’. Nutrients, Volume 12, Issue 2, 419. https://doi.org/10.3390/nu12020419
- Auriemma, RS et al. (2021). ‘The Vaginal Microbiome: A Long Urogenital Colonization Throughout Woman Life’. Front. Cell. Infect. Microbiol., 06 July 2021 https://doi.org/10.3389/fcimb.2021.686167
- Mulheisen, A., & Herbst-Kravoletz, M (2016). ‘Menopause and the vaginal microbiome’. Maturitas, Volume 91, P42-50, September 01. https://doi.org/10.1016/j.maturitas.2016.05.015
- Gliniewicz, K et al. (2019). ‘Comparison of the Vaginal Microbiomes of Premenopausal and Postmenopausal Women’. Frontiers in Microbiology, 14 February 2019. https://doi.org/10.3389/fmicb.2019.00193
- Dumic, I et al. (2019). ‘Gastrointestinal Tract Disorders in Older Age’. Canadian Journal of Gastroenterology & Hepatology, 2019, 6757524. https://doi.org/10.1155/2019/6757524
- Firth, M., & Prather, CM. (2002). ‘Gastrointestinal motility problems in the elderly patient’. Gastroenterology, Volume 122, Issue 6, P1688-1700. https://doi.org/10.1053/gast.2002.33566
- Corcoran, C et al. (2019). ‘Malnutrition in the elderly’. Science Progress, Volume 102, Issue 2 P103-196 https://doi.org/10.1177/0036850419854290
- Calder, PC , et al. (2022). ‘Nutrition, Immunosenescence, and Infectious Disease: An Overview of the Scientific Evidence on Micronutrients and on Modulation of the Gut Microbiota’. Advances in Nutrition (Bethesda, Md.), Volume 13, Issue 5, S1–S26. https://doi.org/10.1093/advances/nmac052
- Weyand, CM., & Goronzy, JJ. (2016). ‘Aging of the Immune System. Mechanisms and Therapeutic Targets’. Annals of the American Thoracic Society, Volume 13, Issue 5, S422–S428. https://doi.org/10.1513/AnnalsATS.201602-095A
- Ferrucci, L., Fabbri, E. (2018). ‘Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty’. Nature Reviews Cardiology, Volume15, P505–522. https://doi.org/10.1038/s41569-018-0064-2
- Novotny, SA., Warren, GL., & Hamrick, MW. (2015). ‘Aging and the muscle-bone relationship’. Physiology (Bethesda, Md.), Volume 30, Issue 1, P8–16. https://doi.org/10.1152/physiol.00033.2014
- Ji, M. X., & Yu, Q. (2015). ‘Primary osteoporosis in postmenopausal women’. Chronic diseases and translational medicine, Volume 1, Issue 1, P9–13. https://doi.org/10.1016/j.cdtm.2015.02.006
- Ogawa, S., Yakabe, M., & Akishita, M. (2016). ‘Age-related sarcopenia and its pathophysiological bases’. Inflammation and Regeneration, Volume 36, Article 17. https://doi.org/10.1186/s41232-016-0022-5
- Yakabe, M., Ogawa, S., & & Akishita, M. (2015). ‘Clinical Manifestations and Pathophysiology of Sarcopenia’. RNA and Transcription, Volume 1, No. 2, P10-17. doi: 10.11648/j.rnat.20150102.11
- Ding, K., Hua, F., & Ding, W. (2020). ‘Gut Microbiome and Osteoporosis’. Aging and disease, Volume 11, Issue 2, P438–447. https://doi.org/10.14336/AD.2019.0523
- Xu, Z et al. (2020). ‘Gut Microbiome Reveals Specific Dysbiosis in Primary Osteoporosis’. Front. Cell. Infect. Microbiol., 21 April 2020 https://doi.org/10.3389/fcimb.2020.00160
- Liu, C., Cheung, WH., Li, J., et al. (2021). ‘Understanding the gut microbiota and sarcopenia: a systematic review’. Journal of Cachexia, Sarcopenia and Muscle, Volume 12, Issue 6, P1393–1407. https://doi.org/10.1002/jcsm.12784
- Lochlainn, MN., Bowyer, RCE., & Steves CJ. (2018). ‘Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome’. Nutrients 2018, Volume 10, Issue 7, 929; https://doi.org/10.3390/nu10070929
- Jung, C., & Brubaker, L. (2019). ‘The etiology and management of recurrent urinary tract infections in postmenopausal women’. Climacteric: the Journal of the International Menopause Society, Volume 22, Issue 3, P242–249. https://doi.org/10.1080/13697137.2018.1551871
- Mulheisen, A., & Herbst-Kravoletz, M (2016). ‘Menopause and the vaginal microbiome’. Maturitas, Volume 91, P42-50, September 01. https://doi.org/10.1016/j.maturitas.2016.05.015
- Gliniewicz, K et al. (2019). ‘Comparison of the Vaginal Microbiomes of Premenopausal and Postmenopausal Women’. Frontiers in Microbiology, 14 February 2019. https://doi.org/10.3389/fmicb.2019.00193
- MacBride, MB., Rhodes, DJ., & Shuster, L. T. (2010). ‘Vulvovaginal atrophy’. Mayo Clinic proceedings, Volume 85, Issue 1, P87–94. https://doi.org/10.4065/mcp.2009.0413
- Naumova, I., & Castelo-Branco, C. (2018). ‘Current treatment options for postmenopausal vaginal atrophy’. International journal of women’s health, Volume 10, P387–395. https://doi.org/10.2147/IJWH.S158913
- Hoffmann, JN et al. (2014), ‘Prevalence of Bacterial Vaginosis and Candida among Postmenopausal Women in the United States’. The Journals of Gerontology: Series B, Volume 69, Issue Suppl_2, November 2014, Pages S205–S214, https://doi.org/10.1093/geronb/gbu105
- Szymański, JK.., Słabuszewska-Jóźwiak, A., & Jakiel, G. (2021). ‘Vaginal Aging-What We Know and What We Do Not Know’. International Journal of Environmental Research and Public Health, Volume 18, Issue 9, 4935. https://doi.org/10.3390/ijerph18094935
- Waller et al. (2011). ‘Dose-response effect of Bifidobacterium lactis HN019 on whole gut transit time and functional gastrointestinal symptoms in adults.’ Scandinavian Journal of Gastroenterology. 46: P1057-1064
- Gopal, PK., Prasad, J., Gill, HS. (2003). ‘Effects of the consumption of Bifidobacterium lactis HN019 (DR10TM) and galacto-oligosaccharides on the microflora of the gastrointestinal tract in human subjects.’ Nutrition Research. 23 (2003) P1313–1328. https://doi.org/10.1016/S0271-5317(03)00134-9
- Gill H et al. (2001). ‘Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019′. Am J Clin Nutr, Volume 74: P833-839.
- Miller L et al. (2017). ‘The Effect of Bifidobacterium animalis ssp. lactis HN019 on Cellular Immune Function in Healthy Elderly Subjects: Systematic Review and Meta-Analysis’. Nutrients, Volume 9, Issue 3:191.
- Bernini L et al. (2016). ‘Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomised trial. Effects of probiotics on metabolic syndrome’. Nutrition, Volume 32, Issue 6: P716-9.
- Upadhyaya, S. and Banerjee, G. (2011). ‘Enhancement of natural killer cell activity in immuno-compromised elderly subjects by Bacillus coagulans.’ International Journal of Probiotics and Prebiotics. Volume 6, No.3/4 P141-146.
- Madempudi, R et al. (2019). ‘Randomised clinical trial: ‘The effect of probiotic Bacillus coagulans Unique IS2 vs. placebo on the symptoms management of irritable bowel syndrome in adults’. Scientific Reports. 9: 12210. https://doi.org/10.1038/s41598-019-48554-x
- Eskesen, D et al. (2015). ‘Effect of the probiotic strain Bifidobacterium animalis subsp. lactis, BB-12®, on defecation frequency in healthy subjects with low defecation frequency and abdominal discomfort: a randomised, double-blind, placebo-controlled, parallel-group trial’. The British Journal of Nutrition, Volume 114, Issue 10, P1638–1646. https://doi.org/10.1017/S0007114515003347
- Alm L, et al (1993). ‘Effect of a new fermented milk product “CULTURA” on constipation in geriatric patients’. 1st Lactic Acid Bacteria Computer Conference Proceedings. Horizon Scientific Press, Norfolk, England 1993.
- Beerepoot et al. (2012). ‘Lactobacilli vs antibiotics to prevent urinary tract infections: a randomized, double-blind, non-inferiority trial in postmenopausal women’. Arch Intern Med., Volume 172, Issue 9, P704-12.
- Macklaim et al., (2015). ‘Changes in vaginal microbiota following antimicrobial and probiotic therapy’. Microbial Ecology in Health and Disease, 26:27799.
- Martinez et al. (2009). ‘Improved treatment of vulvovaginal candidiasis with fluconazole plus probiotic Lactobacillus rhamnosus GR-1® and Lactobacillus reuteri RC-14®’. Lett Appl Microbiol. Volume 48, Issue 3, P269-74
March 2023
IHCAN references March 2023
WELCOME
“The seven lifestyle factors in middle-age proven to protect you from dementia later in life”, by Luke Andrews. https://www.dailymail.co.uk, Feb 27, 2023.
Association Between Drug Characteristics and Manufacturer Spending on Direct-to-Consumer Advertising. JAMA 2023, Feb 7;329(5):386-392. https://pubmed.ncbi.nlm.nih.gov/36749334.
“New Study: In the Midst of COVID-19 Crisis, 7 out of 10 Big Pharma Companies Spent More on Sales and Marketing than R&D”: https://www.ahip.org/news/articles/new-study-in-the-midst-of-covid-19-crisis-7-out-of-10-big-pharma-companies-spent-more-on-sales-and-marketing-than-r-d.
NEWS
Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 2023, Fe 23: https://www.cell.com/immunity/fulltext/S1074-7613(23)00036-5.
Reduction in caffeine withdrawal after open-label decaffeinated coffee. Journal of Psychopharmacology 2023, Jan, 37(2):181-191. https://journals.sagepub.com/doi/10.1177/02698811221147152.
Sources and severity of bias in estimates of the BMI–mortality association. Population Studies, 2023; 1 DOI: 10.1080/00324728.2023.2168035.
Sources and severity of bias in estimates of the BMI–mortality association. Population Studies, 2023; 1 DOI: 10.1080/00324728.2023.2168035.
Association of COVID-19 Vaccination With Risk for Incident Diabetes After COVID-19 Infection. JAMA Network Open 2023, 6(2): e2255965. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2801415. Coxsackievirus B Type 4 Infection in β Cells Downregulates the Chaperone Prefoldin URI to Induce a MODY4-like Diabetes via Pdx1 Silencing. Cell Rep Med 2020, Oct 20, 1(7):100125. https://pubmed.ncbi.nlm.nih.gov/33205075.
Type 2 diabetes and viral infection; cause and effect of disease. Diabetes Research and Clinical Practice 2021, 172: 108637. https://doi.org/10.1016/j.diabres.2020.108637.
“Multi-‘omics of gut microbiome-host interactions in short- and long-term Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients”. Cell Host & Microbe 2023, Feb: https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(23)00021-5.
Variation of butyrate production in the gut microbiome in type 2 diabetes patients. Int Microbiol 2023, Feb 13: https://doi.org/10.1007/s10123-023-00324-6.
IBD UPDATE
Curcumin-Qingdai Combination For Patients With Active Ulcerative Colitis: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. Inflammatory Bowel Diseases 2023, Feb, 29, Supplement_1, S9: https://doi.org/10.1093/ibd/izac247.019.
Qingdai (Qd) For Patients With Active Ulcerative Colitis: A Retrospective Israeli National Experience. Inflammatory Bowel Diseases 2023, Feb, 29, Supplement_1, S83–S84: https://doi.org/10.1093/ibd/izac247.159.
Curcumin-QingDai Combination as Treatment for Moderate-Severe Ulcerative Colitis. Case Rep Gastroenterol 2022, 563-8: https://www.karger.com/Article/FullText/526646#.
- Curcumin in Combination With Mesalamine Induces Remission in Patients With Mild-to-Moderate Ulcerative Colitis in a Randomized Controlled Trial. Clin Gastroenterol Hepatol 2015 Aug;13(8), 1444-9.e1: https://pubmed.ncbi.nlm.nih.gov/25724700.
2. Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions.Am J Physiol Cell Physiol. 2017;312(4):C438–45.
3. Therapeutic efficacy of the Qing Dai in patients with intractable ulcerative colitis. World J Gastroenterol 2013, May 7;19(17):2718-22: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645393.
Antibiotic use as a risk factor for inflammatory bowel disease across the ages: a population-based cohort study. Gut 2023, Online First January 9: https://gut.bmj.com/content/early/2023/01/03/gutjnl-2022-327845.info.
Antibiotic use and the development of inflammatory bowel disease: a national case-control study in Sweden. Lancet Gastroenterol Hepatol 2020, Nov;5(11):986-995: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034612.
Allobaculum mucilyticum sp. nov. and Allobaculum fili sp. nov., two novel members of the Allobaculum genus isolated from the human intestinal tract. International Journal of Systematic and Evolutionary Microbiology 2023, Jan 73(1):005635. https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.005635.
Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nature Communications 2022, Dec 20: https://www.nature.com/articles/s41467-022-35309-y.
PROBIOTCIS and PREBIOTICS
Anthocyanins as Promising Molecules Affecting Energy Homeostasis, Inflammation, and Gut Microbiota in Type 2 Diabetes with Special Reference to Impact of Acylation. Journal of Agricultural and Food Chemistry 2022; 71 (2): 1002. https://pubs.acs.org/doi/full/10.1021/acs.jafc.2c05879.
Fatty acids derived from the probiotic Lacticaseibacillus rhamnosus HA-114 suppress age-dependent neurodegeneration. Communications Biology, 2022; 5 (1): https://www.nature.com/articles/s42003-022-04295-8.
Modulating the Microbiome for Crohn’s Disease Treatment. Gastroenterology 2023, Jan 24, S0016-5085(23)00049-5: https://pubmed.ncbi.nlm.nih.gov/36702360.
The σE Pathway Is Involved in Biofilm Formation by Crohn’s Disease-Associated Adherent-Invasive Escherichia coli. J Bacteriol.2013 Jan; 195(1), 76–84: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536164.
The Crohn’s disease-related bacterial strain LF82 assembles biofilm-like communities to protect itself from phagolysosomal attack. Commun Biol 2021, 4, 627: https://www.nature.com/articles/s42003-021-02161-7.
SUPERFOODS
Chia seeds (Salvia hispanica L.): A therapeutic weapon in metabolic disorders. Food Science & Nutrition 2023, 11, 3-16. https://doi.org/10.1002/fsn3.3035.
Açai pulp improves cognition and insulin sensitivity in obese mice. Nutritional Neuroscience 2023: https://doi.org/10.1080/1028415X.2022.2158931.
Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaı́ (Euterpe oleracea Mart.) Polyphenols. ACS Omega 2019; 4 (13): 15628 DOI: 10.1021/acsomega.9b02127.
15 N ‐labeled dietary nitrate supplementation increases human skeletal muscle nitrate concentration and improves muscle torque production. Acta Physiologica 2023; DOI: 10.1111/apha.13924.
Cinnamon and cognitive function: a systematic review of preclinical and clinical studies. Nutr Neurosci 2023, Jan 18:1-15: https://pubmed.ncbi.nlm.nih.gov/36652384.
RESEARCH update
Hericerin derivatives activates a pan-neurotrophic pathway in central hippocampal neurons converging to ERK1/2 signaling enhancing spatial memory. Journal of Neurochemistry 2003, Jan 20, 00, 1-18. https://doi.org/10.1111/jnc.15767.
Effect of alternate day fasting combined with aerobic exercise on non-alcoholic fatty liver disease: A randomized controlled trial. Cell Metab. 2023 Jan 3;35(1):56-70.e3. https://pubmed.ncbi.nlm.nih.gov/36549296.
The Role of Omega-3 Polyunsaturated Fatty Acids and Their Lipid Mediators on Skeletal Muscle Regeneration: A Narrative Review. Nutrients 2023, Feb 8, 15, 871: https://doi.org/10.3390/nu15040871.
A new paradigm in sarcopenia: Cognitive impairment caused by imbalanced myokine secretion and vascular dysfunction. Biomed Pharmacother 2022 Mar;147:112636. https://pubmed.ncbi.nlm.nih.gov/35051857.
Association between sarcopenia and cognitive function in older Chinese adults: Evidence from the China health and retirement longitudinal study. Front Public Health 2023, Jan 10; https://pubmed.ncbi.nlm.nih.gov/36703834.
Oral hygiene, mouthwash usage and cardiovascular mortality during 18.8 years of follow-up. Br Dent J 2023, Feb 3,1-6: https://pubmed.ncbi.nlm.nih.gov/36737459.
Associations of genetic and infectious risk factors with coronary heart disease. eLife 2023, Feb 14, 12:e79742: https://doi.org/10.7554/eLife.79742.
February 2023
WELCOME
Starmer and Sunak:
https://www.theguardian.com/politics/2023/jan/15/keir-starmer-pledges-to-tackle-bureaucratic-nonsense-to-save-nhs.
https://www.theguardian.com/society/2023/jan/30/rishi-sunak-set-to-unveil-emergency-care-plan-to-slash-nhs-waiting-times.
“NHS in crisis: The worst reasons people visit A&E when they shouldn’t”, by Will Worley. The Independent, 2016, March 26: https://www.independent.co.uk/news/uk/home-news/nhs-crisis-worst-reasons-people-visit-a-e-when-they-shouldnt-a6954296.html.
Antidepressants:
https://www.nice.org.uk/news/nice-draft-quality-standard-depression-adults-update-2023.
Hypertension:
https://www.bhf.org.uk/what-we-do/news-from-the-bhf/news-archive/2022/april/high-blood-pressure-injection.
https://www.nhs.uk/conditions/high-blood-pressure-hypertension/causes.
Diabetes:
https://www.healthexpress.co.uk/ozempic.
The costs of drug prescriptions for diabetes in the NHS. Lancet 2019, Jan 19;393(10168):226-227: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)33190-8/fulltext.
NEWS
Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat Commun 2022, 13, 6958: https://www.nature.com/articles/s41467-022-34667-x.
Gut Microbiota and Time-Restricted Feeding/Eating: A Targeted Biomarker and Approach in Precision Nutrition. Nutrients 2023, Jan 4, 15, 259: https://www.mdpi.com/2072-6643/15/2/259.
Opportunities to integrate nutrigenomics into clinical practice and patient counselling. Eur J Clin Nutr 2023, Jan;77(1):36-44: https://pubmed.ncbi.nlm.nih.gov/35444269.
What predicts drug-free type 2 diabetes remission? Insights from an 8-year general practice service evaluation of a lower carbohydrate diet with weight loss. BMJ Nutrition, Prevention & Health 2023;e000544: https://nutrition.bmj.com/content/early/2023/01/10/bmjnph-2022-000544.info.
Association of omega 3 polyunsaturated fatty acids with incident chronic kidney disease: pooled analysis of 19 cohorts. BMJ 2023, 380, Jan 18: https://doi.org/10.1136/bmj-2022-072909.
The FADS1 rs174550 Genotype Modifies the n‐3 and n‐6 PUFA and Lipid Mediator Responses to a High Alpha‐Linolenic Acid and High Linoleic Acid Diets. Molecular Nutrition & Food Research 2022: https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202200351.
Probiotic for pathogen-specific Staphylococcus aureus decolonisation in Thailand: a phase 2, double-blind, randomised, placebo-controlled trial. The Lancet Microbe 2023, Jan 13: https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(22)00322-6/fulltext.
Purine Nucleosides Interfere with c-di-AMP Levels and Act as Adjuvants To Re-Sensitize MRSA To β-Lactam Antibiotics. mBio 2022, Dec 12: https://journals.asm.org/doi/10.1128/mbio.02478-22?cookieSet=1.
Dietary nucleotides: a novel supplement in fish feeds: 1. Effects on resistance to disease in salmonids. Aquaculture 2001, 199: 1-2, 159-169: https://www.sciencedirect.com/science/article/abs/pii/S0044848601005774.
A Randomised Double Blind Placebo Controlled Trial of a Nucleotide-Containing Supplement Nucell on Symptoms of Participants with the Common Cold – A Pilot Study. https://eresearch.qmu.ac.uk/handle/20.500.12289/4363.
Facing Resistant Bacteria with Plant Essential Oils: Reviewing the Oregano Case. Antibiotics 2022, Dec 8, 11(12), 1777; https://doi.org/10.3390/antibiotics11121777.
Bactericidal Property of Oregano Oil Against Multidrug-Resistant Clinical Isolate. Front Microbiol 2018; 9: 2329: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182053.
VITAMIN D
Association of Body Weight With Response to Vitamin D Supplementation and Metabolism. JAMA Netw Open 2023, 6(1):e2250681: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2800490.
Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr 2000;72:690–3: https://pubmed.ncbi.nlm.nih.gov/10966885.
Vitamin D deficiency in obesity and health consequences. Current Opinion in Endocrinology and Diabetes 2006, 13(5):p 412-418, Oct: https://journals.lww.com/co-endocrinology/Abstract/2006/10000/Vitamin_D_deficiency_in_obesity_and_health.4.aspx.
“Michael F. Holick, PhD, MD The Pioneer of Vitamin D Research”, by Philip Smith. Life Extension Magazine 2010, Sept: https://www.lifeextension.com/magazine/2010/9/michael-holick-the-pioneer-of-vitamin-d-research.
The vitamin d dose response in obesity. Endocr Pract 2014, Dec;20(12):1258-64: https://pubmed.ncbi.nlm.nih.gov/25100366/.
Regular use of vitamin D supplement is associated with fewer melanoma cases compared to non-use: a cross-sectional study in 498 adult subjects at risk of skin cancers. Melanoma Research 2022; published ahead of print DOI: 10.1097/CMR.0000000000000870.
Vitamin D Deficiency Increases Mortality Risk in the UK Biobank. Annals of Internal Medicine 2022, Nov: DOI: 10.7326/M21-3324.
LEARNING ZONE
1. Taghizade Z.I., Rezaiepour A., Mehran A.B., Alimoradi Z. Communication skills application and its’ relation to clients’ satisfaction. Hayat. 2006;12:47–55. [Google Scholar]
- Kahrima I., Nural N., Arsal U., Torbas M., Can G., Kasim S. The effect of empathy training on the empathic skills of nurses. Iran Red Crescent Med. J. 2016;18:1–10. [PMC free article][PubMed] [Google Scholar]
- Deligianni A., Kyriakidou M., Kaba E., Kelesi M., Rovithis M., Fasoi G., Rikos N., Stavropoulou A. Empathy equals: the meaning of empathy as it perceived by Greek nurse students—a qualitative study. Glob. J. Health Sci. 2017;9:171–180. doi: 10.5539/gjhs.v9n1p171. [CrossRef] [Google Scholar]
- Ouzouni C., Nakakis K. An exploratory study of student nurse’s empathy. Health Sci. J. 2012;6:534–552. [Google Scholar]
- Stanley S., Sethuramalingam V. Empathy in social work: implications for practice. IJPR. 2015;20:51–61. [Google Scholar]
- Hasgul E., Serpen E. Empathy’s Importance in Social Work Practices. Athens Institute for Education and Research ATINER; Athens, Greece: 2014. [Google Scholar]
- Rogers C.R. Client-Centered Therapy. Houghton Mifflin; Boston, MA, USA: 1951. [Google Scholar]
- Rothery M., Tutty L. Client-centered therapy. In: Lehmann P., Coady N., editors. Theoretical Perspectives for Direct Social Work Practice: A Genenalist-Eclectic Approach. Springer; New York, NY, USA: 2001. pp. 223–239. [Google Scholar]
- Wickman S.A., Campell C. An analysis of how Carl Rogers enacted client- centered conversation with Gloria. J. Couns. Dev. 2003;81:178–189. doi: 10.1002/j.1556-6678.2003.tb00239.x. [CrossRef] [Google Scholar]
- Oxford English Dictionary Online. Oxford University Press. [(accessed on 15 September 2019)]; Available online: http://oxforddictionaries.com/definition/English/empathyq=empathy
- King S.H. The structure of empathy in social work practice. J. Hum. Behav. Soc. Environ. 2011;21:679–695. doi: 10.1080/10911359.2011.583516. [CrossRef] [Google Scholar]
- Kliszcz J., Nowicka-Sauer K., Trzeciak B., Nowak P., Sadowska A. Empathy in health care providers—validation study of the Polish version of the Jefferson Scale of Empathy. Adv. Med. Sci. 2006;51:219–225. [PubMed] [Google Scholar]
- King S.J., Holosko M.J. The development and initial validation of the empathy scale for social workers. Res. Soc. Work Pract. 2012;22:174–185. doi: 10.1177/1049731511417136. [CrossRef] [Google Scholar]
- Batson C.D. The Altruism Question: Toward a Social-Psychological Answer. Erlbaum; Hillsdale, MI, USA: 1991. [Google Scholar]
- Skovholt T. The cycle of caring: a model of expertise in the helping professions. J. Ment. Health Couns. 2005;27:82–93. doi: 10.17744/mehc.27.1.mj5rcvy6c713tafw. [CrossRef] [Google Scholar]
- Turner K. Mindfulness: the present moment in clinical social work. Clin. Soc. Work J. 2009;37:95–103. doi: 10.1007/s10615-008-0182-0. [CrossRef] [Google Scholar]
- Ames D.R., Kammarath L.K. Mind—reading and metacognition: narcissism not actual competence predicts self-estimated ability. J. Nonverbal. Behav. 2004;28:187–209. doi: 10.1023/B:JONB.0000039649.20015.0e. [CrossRef] [Google Scholar]
- Hojat M. Empathy in Patient Care: Antecedents, Development, Measurement, and Outcomes. Springer; New York, NY, USA: 2007. [Google Scholar]
- Jollife D., Farrigthon D.P. Development and validation of the basic empathy scale. J. Adolesc. 2005;29:589–611. doi: 10.1016/j.adolescence.2005.08.010. [PubMed] [CrossRef] [Google Scholar]
- Lantz J. Existential theory. In: Lehmann P., Coady N., editors. Theoretical Perspectives for Direct Social Work Practice: A Generalist-Eclectic Approach. Springer; New York, NY, USA: 2001. pp. 240–254. [Google Scholar]
- Preckel K., Kanske P., Singer T. On the interaction of social affect and cognition empathy, compassion and theory of mind. Curr. Opin. Behav. Sci. 2018;19:1–6. [Google Scholar]
- Cuartero M.E., Campos-Vidal J.F. Self-care behavior and their relationship with satisfaction and compassion fatigue levels among social workers. Soc. Work Health Care. 2019;58:274–290. doi: 10.1080/00981389.2018.1558164. [PubMed] [CrossRef] [Google Scholar]
- Choi G.Y. Secondary traumatic stress and empowerment among social workers working with family violence or sexual assault survivors. J. Soc. Work. 2017;17:358–378. doi: 10.1177/1468017316640194. [CrossRef] [Google Scholar]
- Riess H. Empathy in medicine: a neurological perspective. J. Am. Med. Assoc. 2010;304:1604–1605. doi: 10.1001/jama.2010.1455. [PubMed] [CrossRef] [Google Scholar]
- Boyle M.J., Williams B., Brown T., Molly A., Mckennal E., Lewis B. Level of empathy in undergraduate health science student. Int. J. Med. Educ. 2010;5:299–306. [Google Scholar]
- Hojat M., Mangione S., Nasca T.J., Cohen M.J.M., Gonnella J.S., Erdmann J.B., Veloski J., Magee M. The Jefferson scale of physician empathy: development and preliminary psychometric data. Edu. Psychol. Meas. 2001;61:349–365. doi: 10.1177/00131640121971158. [CrossRef] [Google Scholar]
- Spiro H. Commentary: the practice of empathy. Acad. Med. 2009;84:1177–1179. doi: 10.1097/ACM.0b013e3181b18934. [PubMed] [CrossRef] [Google Scholar]
- Hojat M., Gonella J.S., Mangione S., Nasca T.J., Veloski J., Erdamann J.B., Callahan C.A., Magee M. Empathy in medical students as related to academic performance, clinical competence and gender. Med. Educ. 2002;36:522–527. doi: 10.1046/j.1365-2923.2002.01234.x. [PubMed] [CrossRef] [Google Scholar]
- Hojat M., Louis D.Z., Maio V., Wang X., Rossi G. Empathy and health care quality. Am. J. Med. Qual. 2013;28:6–7. doi: 10.1177/1062860612464731. [PubMed] [CrossRef] [Google Scholar]
- Del Canale S., Louis D.Z., Maio V., Wang X., Rossi G., Hojat M. The relationship between physician empathy and disease complications: an empirical study of primary care physicians and their diabetic patients in Parma, Italy. Acad. Med. 2012;87:1243–1249. doi: 10.1097/ACM.0b013e3182628fbf. [PubMed] [CrossRef] [Google Scholar]
- Bonvicini K.A., Perlin M.J., Bylund C.L., Carrol A.G., Rouse R.A., Goldstein M.G. Impact of communication training on physician expression of empathy in patient encounters. Patient Educ. Couns. 2009;75:3–10. doi: 10.1016/j.pec.2008.09.007. [PubMed] [CrossRef] [Google Scholar]
- Ogle J., Bushnell J.A., Caputi P. Empathy is related to clinical competence in medical care. Med. Educ. 2013;47:824–831. doi: 10.1111/medu.12232. [PubMed] [CrossRef] [Google Scholar]
- Hojat M., Louis D.Z., Markham F.W., Wender R., Rabinowitz C., Gonnella J.S. Physicians’ empathy and clinical outcomes for diabetic patients. Acad. Med. 2011;86:359–364. doi: 10.1097/ACM.0b013e3182086fe1. [PubMed] [CrossRef] [Google Scholar]
- Brunero S., Lamonts S., Coates M. A review of empathy education in nursing. Nurs. Inq. 2010;17:65–74. doi: 10.1111/j.1440-1800.2009.00482.x. [PubMed] [CrossRef] [Google Scholar]
- Moloney S., Gair S. Empathy and spiritual care in midwifery practice: contributing to women’s enhanced birth experiences. Women Birth. 2015;28:323–328. doi: 10.1016/j.wombi.2015.04.009. [PubMed] [CrossRef] [Google Scholar]
- Lim B.T., Moriarti H., Huthwaite M. ‘Being-in-role’: A teaching innovation to enhance empathic communication skills in medical students. Med. Teach. 2011;33:663–669. doi: 10.3109/0142159X.2011.611193. [PubMed] [CrossRef] [Google Scholar]
- Hemmerdier J.M., Stoddart S.D.R., Lilford R.J. A systemic review of tests of empathy in medicine. BMC Med. Educ. 2007;7:1–8. [Google Scholar]
- Μoudatsou M. Ph.D. Thesis. University of Crete; Heraklion, Greece: 2015. Correlation between Social Capital and Womens’ Health in a Rural Municipality in Crete. [Google Scholar]
- Norcross J.C. Psychotherapy Relationships that Work: Evidence Based Responsiveness. 2nd ed. Oxford University Press; New York, NY, USA: 2011. [Google Scholar]
- Kallinikaki T.H. Qualitative Methods in Social Work Research.Topos; Athens, Greece: 2010. [Google Scholar]
- Reynolds W.J., Scott B. Do nurses and other professional helpers normally display much empathy? J. Adv. Nurs. 2000;31:226–234. doi: 10.1046/j.1365-2648.2000.01242.x. [PubMed] [CrossRef] [Google Scholar]
- Kenny D.A., Veldhuijzen W., Weijden T., Leblanc A., Lockyer J., Legare F., Campbell C. Interpersonal perception in the context of doctor-patient relationships: a dyadic analysis of doctor–patient communication. Soc. Sci. Med. 2010;70:763–768. doi: 10.1016/j.socscimed.2009.10.065. [PubMed] [CrossRef] [Google Scholar]
- Hojat M., Vergare M.J., Maxwell K., Brainard G., Herrine S.K., Isenberg G.A., Veloski J., Gonnella J.S. The devil is in the third year: a longitudinal study of erosion of empathy in medical school. Acad. Med. 2009;84:1182–1191. doi: 10.1097/ACM.0b013e3181b17e55. [PubMed] [CrossRef] [Google Scholar]
- Pedersen R. Empirical research on empathy in medicine—a critical review. Patient Educ. Couns. 2009;76:307–322. doi: 10.1016/j.pec.2009.06.012. [PubMed] [CrossRef] [Google Scholar]
- Jefferson Scale of Empathy (JSE). Center for research in medical education and health care (CRMEHC) [(accessed on 12 December 2018)]; Available online: http://www.jefferson.edu/jmc/crmehc/jse.html
- Hojat M., Gonnella J.S., Nasca T.J., Mangione S., Vergare M., Magee M. Physician empathy: definition, measurement and relationship to gender and specialty. Am. J. Psychiatry. 2002;159:1563–1569. doi: 10.1176/appi.ajp.159.9.1563. [PubMed] [CrossRef] [Google Scholar]
- Sun Hun D., Hong Soo J., Lee Hun D., Gonnella S.J., Hojat M. The Jefferson scale of physician empathy: A preliminary psychometric study and group comparisons in Korean physicians. Med. Teach. 2012;34:464–468. [PubMed] [Google Scholar]
- Di Lillo M., Cicchetti A., Lo Scalzo A., Taroni F., Hojat M. The Jefferson scale of physician empathy: preliminary psychometrics and group comparisons in Italian physicians. Acad. Med. 2009;84:1198–1202. doi: 10.1097/ACM.0b013e3181b17b3f. [PubMed] [CrossRef] [Google Scholar]
- Stanley S., Buvaneswari G.M., Meenakshi A. Predictors of empathy in women social workers. J. Soc. Work. 2020;20:43–63. doi: 10.1177/1468017318794280. [CrossRef] [Google Scholar]
- Greemo E., Ting L., Wader K. Predicting empathy in helping professionals: Comparison of social work and nursing students. Soc. Work Educ. 2017;37:173–189. doi: 10.1080/02615479.2017.1389879. [CrossRef] [Google Scholar]
- Van Ryn M., Hardeman R.R., Phelan S.M., Burke S.E., Przedworski J., Allen M.L., Burgess D.J., Ridgeway J., White R.O., Dovidio J.F. Psychosocial predictors of attitudes towards physician empathy in clinical encounters, among 4732 1th year medical students: a report from the CHANGES study. Patient Educ. Couns. 2014;96:367–375. doi: 10.1016/j.pec.2014.06.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Ben–Porat A., Itzhaky H. Burnout among trauma social workers: the contribution of personal and environmental resources. J. Soc. Work. 2015;17:606–620. doi: 10.1177/1468017314552158. [CrossRef] [Google Scholar]
- Wagaman M.A., Geiger J.M., Shockley C., Segal E.A. The vole of empathy in burnout, compassion satisfaction and secondary traumatic stress among social workers. Soc. Work. 2015;60:201–209. doi: 10.1093/sw/swv014. [PubMed] [CrossRef] [Google Scholar]
- Duarte J., Pinto-Gouveia J., Cruz B. Relationships between nurses’ empathy, self-compassion and dimensions of professional quality of life: a cross-sectional study. Int. J. Nurs. Stud. 2016;60:1–11. doi: 10.1016/j.ijnurstu.2016.02.015. [PubMed] [CrossRef] [Google Scholar]
- Stanley S., Mettilba G.B. Reflective ability, empathy and emotional intelligence in undergraduate social work students: a cross sectional study from India. Soc. Work Educ. 2016;35:560–575. doi: 10.1080/02615479.2016.1172563. [CrossRef] [Google Scholar]
- Stanley S., Buvaneswari G.M. Personality attributes of social work students: an assessment of empathy, emotional intelligence and resilience. Soc. Work Chron. 2016;7:85–110. [Google Scholar]
- Pohontsch N.J., Stark A., Ehrhardt M., Kötter T., Scherer M. Influences on students’ empathy in medical education: an exploratory interview study with medical students in their third and last year. BMC Med. Educ. 2018;18:231. doi: 10.1186/s12909-018-1335-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Dadgari A., Kasaeian A., Atash T.S.G., Naserli F.L., Dadvari L., Kalateh J.M. Efficacy of midwifery clinical curriculum in achieving core learning goals: tutors and students’ point of view. Knowledge Health. 2009;4:28–33. [Google Scholar]
- Reynolds W.J., Scott B., Jessiman W.C. Empathy has not been measured in client’ terms or effectively taught: a review of the literature. J. Adv. Nurs. 1999;30:1177–1185. doi: 10.1046/j.1365-2648.1999.01191.x. [PubMed] [CrossRef] [Google Scholar]
- Levinson W., Corawara – Bhat R., Lamp J. A study of patient clues and physician responses in primary care and surgical settings. JAMA. 2000;284:1021–1027. doi: 10.1001/jama.284.8.1021. [PubMed] [CrossRef] [Google Scholar]
- Cinar N., Gevahir R., Sahin S., Sozeri C., Kuguoglu S. Evaluation of the empathetic skills of nursing students with respect to the classes they are attending. Revista Electronica de Entermagen. 2007;9:588–595. [Google Scholar]
- Metes S. The empathetic tendencies and skills of nursing students. Soc. Behav. Personal. 2007;35:1181–1188. doi: 10.2224/sbp.2007.35.9.1181. [CrossRef] [Google Scholar]
- Fallowfield L. Efficacy of a Cancer Research UK communication skills training model for oncologists: A randomized controlled trial. Lancet. 2002;359:650–656. doi: 10.1016/S0140-6736(02)07810-8. [PubMed] [CrossRef] [Google Scholar]
- Pollack K.I. Oncologist communication about emotion during visits with patients with advanced cancer. J. Clin. Oncol. 2007;25:5748–5752. doi: 10.1200/JCO.2007.12.4180. [PubMed] [CrossRef] [Google Scholar]
- Shapiro J. How do physicians teach empathy in the primary care setting. Acad. Med. 2002;77:323–329. doi: 10.1097/00001888-200204000-00012. [PubMed] [CrossRef] [Google Scholar]
- Papouli E. Diversity dolls: A creative teaching method for encouraging social work students to develop empathy and understanding for vulnerable populations. Soc. Work Educ. 2018;38:241–260. doi: 10.1080/02615479.2018.1515904. [CrossRef] [Google Scholar]
- Papouli E. The role of arts in raising ethical awareness and knowledge of the European refugee crisis among social work students. An example from the classroom. Soc. Work Educ. Int. J. 2017;36:775–793. doi: 10.1080/02615479.2017.1353074. [CrossRef] [Google Scholar]
- Zaleski K.L., Araque J.C., Finney K., Harper B., Lewis J., Amit M.S., Tamas C., Steele J.M., Castronuo J. Empathy in social work education. Contemp. Behav. Health Care. 2016;2:48–53. doi: 10.15761/CBHC.1000113. [CrossRef] [Google Scholar]
- Englander M. Empathy training from a phenomenological perspective. J. Phenomenol. Psychol. 2014;45:5–26. doi: 10.1163/15691624-12341266. [CrossRef] [Google Scholar]
- Eriksson K., Englander M. Empathy in social work. J. Soc. Work Educ. 2017;53:607–621. doi: 10.1080/10437797.2017.1284629. [CrossRef] [Google Scholar]
- Lazo D., Vik E. Bachelor’s Thesis. Faculty of Health and Occupational Studies, Gävle University; Gävle, Sweden: 2014. [(accessed on 30 January 2020)]. Reflections on empathy in social work practice: a qualitative study among Swedish social workers. Available online: http://www.diva-portal.org/smash/get/diva2:733643/FULLTEXT01.pdf[Google Scholar]
RESEARCH
Brief diesel exhaust exposure acutely impairs functional brain connectivity in humans: a randomized controlled crossover study. Environmental Health 2023; 22 (1) DOI: 10.1186/s12940-023-00961-4.
Impact of Yoga on Global Cardiovascular Risk as an Add-On to a Regular Exercise Regimen in Patients With Hypertension. Canadian Journal of Cardiology 2022; DOI: 10.1016/j.cjca.2022.09.019.
Fucosylation of HLA-DRB1 regulates CD4+ T cell-mediated anti-melanoma immunity and enhances immunotherapy efficacy. Nature Cancer 2023; https://www.nature.com/articles/s43018-022-00506-7.
Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 2023, Jan 13: https://doi.org/10.1038/s41579-022-00846-2
January 2023
WELCOME
Extraskeletal actions of vitamin D. Ann N Y Acad Sci 2016, Jul;1376(1):29-52: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031366.
NEWS
Tissue specific signature of HHV-6 infection in ME/CFS. Front Mol Biosci Sec Molecular Diagnostics and Therapeutics 2022, provisionally accepted Dec 5: https://www.frontiersin.org/articles/10.3389/fmolb.2022.1044964/abstract.
Saliva antibody-fingerprint of reactivated latent viruses after mild/asymptomatic COVID-19 is unique in patients with myalgic encephalomyelitis/chronic fatigue syndrome Frontiers in Immunology 2022: 10.3389/fimmu.2022.949787.
Anti-Inflammatory Diets in Fertility: An Evidence Review. Nutrients, 2022; 14 (19): 3914 DOI: 10.3390/nu14193914.
Recurrent urinary tract infection and oestrogen shape the taxonomic ecology and function of the postmenopausal urogenital microbiome. Cell Reports Medicine 2022; 3 (10): 100753 DOI: 10.1016/j.xcrm.2022.100753.
Impact of Yoga on Global Cardiovascular Risk as an Add-On to a Regular Exercise Regimen in Patients With Hypertension. Canadian Journal of Cardiology, 2022; DOI: 10.1016/j.cjca.2022.09.019.
Agr2-associated ER stress promotes adherent-invasive E. coli dysbiosis and triggers CD103+ dendritic cell IL-23-dependent ileocolitis. Cell Reports 2022; 41 (7): 111637 DOI: 10.1016/j.celrep.2022.111637.
Micronutrient Supplementation to Reduce Cardiovascular Risk. Journal of the American College of Cardiology 2022; 80 (24): 2269. https://doi.org/10.1016/j.jacc.2022.09.048.
Effects of l-Arginine Plus Vitamin C Supplementation on Physical Performance, Endothelial Function, and Persistent Fatigue in Adults with Long COVID: A Single-Blind Randomized Controlled Trial. Nutrients 2022, 14 (23), 4984: https://doi.org/10.3390/nu14234984.
Combining L-Arginine with vitamin C improves long-COVID symptoms: The LINCOLN Survey. Pharmacol. Res. 2022, 183, 106360: https://pubmed.ncbi.nlm.nih.gov/35868478.
Association between vitamin D status and physical performance in COVID-19 survivors: Results from the Gemelli against COVID-19 post-acute care project. Mech Ageing Dev 2022, Jul, 205:111684. https://pubmed.ncbi.nlm.nih.gov/35568146.
Oral microbes and the formation of cerebral abscesses: A single-centre retrospective study. Journal of Dentistry, 2023; 128: 104366. https://www.sciencedirect.com/science/article/pii/S0300571222004183.
Nasal spray:
Formulation of a Composite Nasal Spray Enabling Enhanced Surface Coverage and Prophylaxis of SARS-COV-2. Advanced Materials.2021. 33(26), 2008304.
Carrageenan nasal spray in virus confirmed common cold: individual patient data analysis of two randomized controlled trials. Multidisciplinary Respiratory Medicine 9, 57.
Nasal Swab samples analysed by high performance liquid chromatography (HPLC) coupled UV-Vis spectroscopy – study conducted by LabWide Solutions HK Ltd.
Vitamin D protects against depression: Evidence from an umbrella meta-analysis on interventional and observational meta-analyses. Pharmacol Res 2022, Dec 9, 106605. https://pubmed.ncbi.nlm.nih.gov/36509315.
ANNE PEMBERTON
1. The polyvagal theory: New insights into adaptive reactions of the autonomic nervous system: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108032.
2. “Healing Developmental Trauma: How Early Trauma Affects Self-Regulation, Self-Image, and the Capacity for Relationship”, by Laurence Heller and Aline Lapierre (Tantor Auidio, 2015): https://www.amazon.com/Healing-Developmental-Trauma-audiobook/dp/B00ZYL0D9S.
3.“Holotropic Breathwork: A New Approach to Self-Exploration and Therapy” by Stanislav Grof and Christina Grof (State University of New York Press, 2010): https://www.amazon.co.uk/dp/1438433948/ref=cm_sw_em_r_mt_dp_KW3ZFMH1TRWDCZK24PX7
4. Healing altered states of consciousness: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479903.
5.https://www.amazon.co.uk/dp/1438433948/ref=cm_sw_em_r_mt_dp_KW3ZFMH1TRWDCZK24PX7
6.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479903.
7. Intergenerational trauma: Parental PTSD and parent-reported child abuse subtypes differentially relate to admission characteristics in the autism inpatient collection: https://onlinelibrary.wiley.com/doi/abs/10.1002/aur.2669.
8. On the ontological status of autism: the ‘double empathy problem’: https://www.tandfonline.com/doi/abs/10.1080/09687599.2012.710008.
9. “The double empathy problem”: https://www.autism.org.uk/advice-and-guidance/professional-practice/double-empathy.
10. “Autistic burnout, explained”: https://www.spectrumnews.org/news/autistic-burnout-explained.
11. The Relation Between Adverse Childhood Experiences and Adult Health: Turning Gold into Lead: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220625.
12. A Model for Basic Emotions Using Observations of Behavior in Drosophila: https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00781/full#B98.
13. The Evolutionary Psychology of Envy and Jealousy: https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01619/full
14. The ecology of human fear: survival optimization and the nervous system: https://www.frontiersin.org/articles/10.3389/fnins.2015.00055/full
15. “The Secret Language of Your Body: The Essential Guide to Health and Wellness”, Inna Segal (Beyond Words, 2010).
16. A Model for Basic Emotions Using Observations of Behavior in Drosophila: https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00781/full#B98
17.“What You Feel You Can Heal”, John Gray (Vermilion, 2002).
18. When the Body Says No: The Cost of Hidden Stress, by Dr Gabor Maté (Vermilion, 2019): https://www.amazon.co.uk/dp/178504222X/ref=cm_sw_em_r_mt_dp_FFHNZAYN5SK3RDWTCKGE.
19. “The Body Keeps the Score: Mind, Brain and Body in the Transformation of Trauma” by Bessel van der Kolk (Penguin, 2015): https://www.amazon.co.uk/dp/0141978619/ref=cm_sw_em_r_mt_dp_G7ZMTXNJ9NZQPD28ZY9W
20. “The Secret Language of Your Body: The Essential Guide to Health and Wellness”, Inna Segal (Beyond Words, 2010): https://www.amazon.co.uk/dp/1582702608/ref=cm_sw_em_r_mt_dp_WD0AA78Y709C1YMHAMKV
21. “The Encyclopedia of Ailments and Diseases: How to Heal the Conflicted Feelings, Emotions, and Thoughts at the Root of Illness”, by Jacques Martel (Findhorn Press, 2021): https://www.amazon.co.uk/dp/1644111896/ref=cm_sw_em_r_mt_dp_BWQ4M63JHXK2CS75BW63.
22 A future perspective for regenerative medicine: understanding the concept of vibrational medicine: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859346.
23. “Tuning the Human Biofield: Healing with Vibrational Sound Therapy”, by Eileen Day McKusick (Healing Arts Press, 2021): https://www.amazon.co.uk/dp/164411318X/ref=cm_sw_em_r_mt_dp_74CPTVMPQBS26XEVBD5Q
- “Lost in Translation: The Social Language Theory of Neurodivergence”, by Janae Elisabeth: https://autietraumageek.medium.com/lost-in-translation-the-social-language-theory-of-neurodivergence-part-1-of-2-1963ba0073c5.25 The polyvagal theory: New insights into adaptive reactions of the autonomic nervous system: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108032.
- “Polyvagal theory in practice”, by Dee Wagner. Counseling Today 2016: https://ct.counseling.org/2016/06/polyvagal-theory-practice/#27. “Music and the Vagus Nerve: How Music Affects the Nervous System and Mental Health”: https://www.musichealth.ai/blog/music-and-the-vagus-nerve.28. Creative Flow and Physiologic States in Dancers During Performance: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266962.
- “How to Stimulate Your Vagus Nerve for Better Mental Health”, by Jordan Fallis, September 24, 2022:
https://sass.uottawa.ca/sites/sass.uottawa.ca/files/how_to_stimulate_your_vagus_nerve_for_better_mental_health_1.pdf.30. Directional effects of whole-body spinning and visual flow in virtual reality on vagal neuromodulation: https://pubmed.ncbi.nlm.nih.gov/34024797.31. Breath of Life: The Respiratory Vagal Stimulation Model of Contemplative Activity: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189422.32. The opioid effects of gluten exorphins: asymptomatic celiac disease: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025969.
COGNITIVE HEALTH
Brain vitamin D forms, cognitive decline, and neuropathology in community-dwelling older adults. Alzheimer’s & Dementia 2022, Dec 7: https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.12836.
Transgenerational transmission of aspartame-induced anxiety and changes in glutamate-GABA signaling and gene expression in the amygdala. Proceedings of the National Academy of Sciences 2022; 119 (49) DOI: 10.1073/pnas.2213120119.
Lutein Decreases Inflammation and Oxidative Stress and Prevents Iron Accumulation and Lipid Peroxidation at Glutamate-Induced Neurotoxicity. Antioxidants (Basel) 2022, Nov 17;11(11):2269. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687421.
Lutein Has a Positive Impact on Brain Health in Healthy Older Adults: A Systematic Review of Randomized Controlled Trials and Cohort Studies. Nutrients 2021, May 21;13(6):1746. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223987.
Association of Red Blood Cell Omega-3 Fatty Acids with MRI Markers and Cognitive Function in Midlife — The Framingham Heart Study. Neurology 2022: https://n.neurology.org/content/99/23/e2572.
DIGESTION
Iron status in pregnant women and women of reproductive age in Europe. Am J Clin Nutr 2017; 106 (Suppl): 1655S-62S.
Riksmaten Adolescents Survey 2016-2017, Swedish National Food Agency (Livsmedelsverket) report series no. 23, 2018.
Nutritional Composition and Estimated Iron and Zinc Bioavailability of Meat Substitutes Available on the Swedish Market. Nutrients 2022; 14 (19): 3903. https://www.mdpi.com/2072-6643/14/19/3903.
Plasticity of the adult human small intestinal stoma microbiota. Cell Host & Microbe 2022: https://www.sciencedirect.com/science/article/abs/pii/S1931312822005157?via%3Dihub
Gravity and the Gut: A Hypothesis of Irritable Bowel Syndrome. American Journal of Gastroenterology, 2022; 117 (12): 1933. https://journals.lww.com/ajg/Fulltext/2022/12000/Gravity_and_the_Gut__A_Hypothesis_of_Irritable.15.aspx.
Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosus, B. lactis, and B. longum). Nutrition. 2018; 53:95-102. doi: 10.1016/j.nut.2018.02.005. https://www.sciencedirect.com/science/article/abs/pii/S0899900718300637.
Evidence of the Anti-Inflammatory Effects of Probiotics and Synbiotics in Intestinal Chronic Diseases. Nutrients 2017, 9, 555. https://doi.org/10.3390/nu9060555.
Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 2022, 611: 578–584. https://www.nature.com/articles/s41586-022-05380-y.
Methanogens and Hydrogen Sulfide Producing Bacteria Guide Distinct Gut Microbe Profiles and Irritable Bowel Syndrome Subtypes. American Journal of Gastroenterology 2022, Dec, 117(12):2055-2066. https://journals.lww.com/ajg/Fulltext/2022/12000/Methanogens_and_Hydrogen_Sulfide_Producing.29.aspx.
RESEARCH
Post-COVID-19 syndrome risk factors and further use of health services in East England. PLOS Global Public Health 2022: https://doi.org/10.1371/journal.pgph.0001188.
Early adversity promotes binge-like eating habits by remodeling a leptin-responsive lateral hypothalamus–brainstem pathway. Nature Neuroscience 2022, Dec 12: https://www.nature.com/articles/s41593-022-01208-0.
The gut microbiota and depressive symptoms across ethnic groups. Nature Communications 2022, Dec 6: https://www.nature.com/articles/s41467-022-34502-3.
Gut microbiome-wide association study of depressive symptoms. Nature Communications 2022, 13, 7128: https://www.nature.com/articles/s41467-022-34502-3#citeas.
Mushrooms:
1. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: A double-blind placebo-controlled clinical trial. Phytother Res 2009;23:367–372. Doi: 10.1002/ptr.2634
- Nutritional mushroom treatment in Meniere’s disease with Coriolus versicolor: A rationale for therapeutic intervention in neuroinflammation and antineurodegeneration. Int J Mol Sci 2020;21:284. Doi: 10.3390/ijms21010284
- Hericium erinaceus and Coriolus versicolor modulate molecular and biochemical changes after traumatic brain injury. Antioxidants 2021;10:898. Doi: 10.3390/antiox10060898
- Natural compounds such as Hericium erinaceus and Coriolus versicolor modulate neuroinflammation, oxidative stress and lipoxin A4 expression in rotenone-induced Parkinson’s disease in mice. Biomedicines 2022;10:2505. https://doi.org/10.3390/biomedicines10102505.
IN PRACTICE
Cyberchondria: Overlap with health anxiety and unique relations with impairment, quality of life, and service utilization. Psychiatry Res 2018, Mar;261:204-211, doi: 10.1016/j.psychres.2018.01.002.
Diagnose this if you can: On the effectiveness of search engines in finding medical self-diagnosis information. In Advances in Information Retrieval: 37th European Conference on IR Research, ECIR 2015, Proceedings [Lecture Notes in Computer Science, Volume 9022]. Springer, Switzerland, pp. 562-567.
Contact us
Target Publishing Ltd
The Old Dairy Hudsons Farm Fieldgate Lane
Ugley Green
CM22 6HJ
UK
Tel. 01279 810080
Email. info@targetpublishing.com
WhatsApp. 07457 405049
Quick Links
Subscribe
Advertise with us
Log In
IHCAN Conferences (online education)
IHCAN Summit (live in-person events)
References
Contact us